scispace - formally typeset
Search or ask a question
Topic

Open-loop controller

About: Open-loop controller is a research topic. Over the lifetime, 16148 publications have been published within this topic receiving 224014 citations. The topic is also known as: non-feedback controller & open-loop control law.


Papers
More filters
Journal ArticleDOI
TL;DR: A self-tuning proportional-integral (PI) controller in which the controller gains are adapted using the particle swarm optimization (PSO) technique is proposed for a static synchronous compensator (STATCOM).
Abstract: A self-tuning proportional-integral (PI) controller in which the controller gains are adapted using the particle swarm optimization (PSO) technique is proposed for a static synchronous compensator (STATCOM). An efficient formula for the estimation of system load impedance using real-time measurements is derived. Based on the estimated system load, a PSO algorithm, which takes the best particle gains, the best global gains, and previous change of gains into account, is employed to reach the desired controller gains. To demonstrate the effectiveness of the proposed PSO self-tuning PI controller for a STATCOM, experimental results for a system under different loading conditions are presented. Results from the self-tuning PI controller are compared with those from the fixed-gain PI controllers.

203 citations

Patent
24 Apr 2002
TL;DR: In this article, a system and method for controlling a mass flow controller to have a constant control loop gain under a variety of different types of fluids and operating conditions, and for configuring the controller for operation with a fluid and/or operating conditions different from that used during a production of the mass flow controllers is presented.
Abstract: A system and method for controlling a mass flow controller to have a constant control loop gain under a variety of different types of fluids and operating conditions, and for configuring the mass flow controller for operation with a fluid and/or operating conditions different from that used during a production of the mass flow controller. Further, the system and method includes providing control by reducing the effects of hysteresis in solenoid actuated devices by providing a non-operational signal to the solenoid actuated device.

202 citations

Journal ArticleDOI
TL;DR: In this article, a novel current control technique is proposed to control both active and reactive power flow from a renewable energy source feeding a microgrid system through a single-phase parallel-connected inverter.
Abstract: In this paper, a novel current control technique is proposed to control both active and reactive power flow from a renewable energy source feeding a microgrid system through a single-phase parallel-connected inverter. The parallel-connected inverter ensures active and reactive power flow from the grid with low-current total harmonic distortion even in the presence of nonlinear load. A p-q theory-based approach is used to find the reference current of the parallel-connected converter to ensure desired operating conditions at the grid terminal. The proposed current controller is simple to implement and gives superior performance over the conventional current controllers, such as rotating frame proportional-integral controller or stationary frame proportional resonant controller. The stability of the proposed controller is ensured by direct Lyapunov method. A new technique based on the spatial repetitive controller is also proposed to improve the performance of the current controller by estimating the grid and other periodic disturbances. Detailed experimental results are presented to show the efficacy of the proposed current control scheme along with the proposed nonlinear controller to control the active and reactive power flow in a single-phase microgrid under different operating conditions.

202 citations

Journal ArticleDOI
TL;DR: It is shown that a stabilizable and detectable linear system with an arbitrarily large delay in the input can be asymptotically stabilized by either linear state or output feedback as long as the open-loop system is not exponentially unstable.
Abstract: This paper examines the asymptotic stabilizability of linear systems with delayed input. By explicit construction of stabilizing feedback laws, it is shown that a stabilizable and detectable linear system with an arbitrarily large delay in the input can be asymptotically stabilized by either linear state or output feedback as long as the open-loop system is not exponentially unstable (i.e., all the open-loop poles are on the closed left-half plane). A simple example shows that such results would not be true if the open-loop system is exponentially unstable. It is further shown that such systems, when subject to actuator saturation, are semiglobally asymptotically stabilizable by linear state or output feedback.

201 citations

Journal ArticleDOI
TL;DR: In this paper, a model-based controller for the regulation of a proton exchange membrane (PEM) fuel cell was proposed, which accounts for spatial dependencies of voltage, current, material flows, and temperatures in the fuel channel.

201 citations


Network Information
Related Topics (5)
Control theory
299.6K papers, 3.1M citations
97% related
Robustness (computer science)
94.7K papers, 1.6M citations
89% related
Electric power system
133K papers, 1.7M citations
85% related
Fuzzy logic
151.2K papers, 2.3M citations
85% related
Optimization problem
96.4K papers, 2.1M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202371
2022124
202167
202079
201998
2018155