scispace - formally typeset
Search or ask a question

Showing papers on "Open quantum system published in 2011"


Journal ArticleDOI
TL;DR: In this paper, the authors give an overview of recent theoretical and experimental progress in the area of nonequilibrium dynamics of isolated quantum systems, particularly focusing on quantum quenches: the temporal evolution following a sudden or slow change of the coupling constants of the system Hamiltonian.
Abstract: This Colloquium gives an overview of recent theoretical and experimental progress in the area of nonequilibrium dynamics of isolated quantum systems There is particularly a focus on quantum quenches: the temporal evolution following a sudden or slow change of the coupling constants of the system Hamiltonian Several aspects of the slow dynamics in driven systems are discussed and the universality of such dynamics in gapless systems with specific focus on dynamics near continuous quantum phase transitions is emphasized Recent progress on understanding thermalization in closed systems through the eigenstate thermalization hypothesis is also reviewed and relaxation in integrable systems is discussed Finally key experiments probing quantum dynamics in cold atom systems are overviewed and put into the context of our current theoretical understanding

2,340 citations


Journal ArticleDOI
12 May 2011-Nature
TL;DR: This programmable artificial spin network bridges the gap between the theoretical study of ideal isolated spin networks and the experimental investigation of bulk magnetic samples, and may provide a practical physical means to implement a quantum algorithm, possibly allowing more-effective approaches to solving certain classes of hard combinatorial optimization problems.
Abstract: Many interesting but practically intractable problems can be reduced to that of finding the ground state of a system of interacting spins. It is believed that the ground state of some naturally occurring spin systems can be effectively attained through a process called quantum annealing. Johnson et al. use quantum annealing to find the ground state of an artificial Ising spin system comprised of an array of eight superconducting flux qubits with programmable spin–spin couplings. With an increased number of spins, the system may provide a practical physical means to implement quantum algorithms, possibly enabling more effective approaches towards solving certain classes of hard combinatorial optimization problems. Many interesting but practically intractable problems can be reduced to that of finding the ground state of a system of interacting spins; however, finding such a ground state remains computationally difficult1. It is believed that the ground state of some naturally occurring spin systems can be effectively attained through a process called quantum annealing2,3. If it could be harnessed, quantum annealing might improve on known methods for solving certain types of problem4,5. However, physical investigation of quantum annealing has been largely confined to microscopic spins in condensed-matter systems6,7,8,9,10,11,12. Here we use quantum annealing to find the ground state of an artificial Ising spin system comprising an array of eight superconducting flux quantum bits with programmable spin–spin couplings. We observe a clear signature of quantum annealing, distinguishable from classical thermal annealing through the temperature dependence of the time at which the system dynamics freezes. Our implementation can be configured in situ to realize a wide variety of different spin networks, each of which can be monitored as it moves towards a low-energy configuration13,14. This programmable artificial spin network bridges the gap between the theoretical study of ideal isolated spin networks and the experimental investigation of bulk magnetic samples. Moreover, with an increased number of spins, such a system may provide a practical physical means to implement a quantum algorithm, possibly allowing more-effective approaches to solving certain classes of hard combinatorial optimization problems.

1,593 citations


Journal ArticleDOI
TL;DR: Loop quantum cosmology (LQC) as mentioned in this paper is the result of applying principles of loop quantum gravity to cosmological settings, where quantum geometry creates a brand new repulsive force which is totally negligible at low spacetime curvature but rises very rapidly in the Planck regime, overwhelming the classical gravitational attraction.
Abstract: Loop quantum cosmology (LQC) is the result of applying principles of loop quantum gravity (LQG) to cosmological settings. The distinguishing feature of LQC is the prominent role played by the quantum geometry effects of LQG. In particular, quantum geometry creates a brand new repulsive force which is totally negligible at low spacetime curvature but rises very rapidly in the Planck regime, overwhelming the classical gravitational attraction. In cosmological models, while Einstein's equations hold to an excellent degree of approximation at low curvature, they undergo major modifications in the Planck regime: for matter satisfying the usual energy conditions, any time a curvature invariant grows to the Planck scale, quantum geometry effects dilute it, thereby resolving singularities of general relativity. Quantum geometry corrections become more sophisticated as the models become richer. In particular, in anisotropic models, there are significant changes in the dynamics of shear potentials which tame their singular behavior in striking contrast to older results on anisotropies in bouncing models. Once singularities are resolved, the conceptual paradigm of cosmology changes and one has to revisit many of the standard issues—e.g. the 'horizon problem'—from a new perspective. Such conceptual issues as well as potential observational consequences of the new Planck scale physics are being explored, especially within the inflationary paradigm. These considerations have given rise to a burst of activity in LQC in recent years, with contributions from quantum gravity experts, mathematical physicists and cosmologists. The goal of this review is to provide an overview of the current state of the art in LQC for three sets of audiences: young researchers interested in entering this area; the quantum gravity community in general and cosmologists who wish to apply LQC to probe modifications in the standard paradigm of the early universe. In this review, effort has been made to streamline the material so that each of these communities can read only the sections they are most interested in, without loss of continuity.

1,162 citations


Journal ArticleDOI
TL;DR: In this paper, a self-contained exposition of the theory and applications of quantum fluctuation relations is presented, with a focus on work fluctuation relation for transiently driven closed or open quantum systems.
Abstract: Two fundamental ingredients play a decisive role in the foundation of fluctuation relations: the principle of microreversibility and the fact that thermal equilibrium is described by the Gibbs canonical ensemble. Building on these two pillars the reader is guided through a self-contained exposition of the theory and applications of quantum fluctuation relations. These are exact results that constitute the fulcrum of the recent development of nonequilibrium thermodynamics beyond the linear response regime. The material is organized in a way that emphasizes the historical connection between quantum fluctuation relations and (non)linear response theory. A number of fundamental issues are clarified which were not completely settled in the prior literature. The main focus is on (i) work fluctuation relations for transiently driven closed or open quantum systems, and (ii) on fluctuation relations for heat and matter exchange in quantum transport settings. Recently performed and proposed experimental applications are presented and discussed.

1,142 citations


Journal ArticleDOI
TL;DR: In this paper, the continuous-time quantum Monte Carlo (QMC) algorithm is used to solve the local correlation problem in quantum impurity models with high and low energy scales and is effective for wide classes of physically realistic models.
Abstract: Quantum impurity models describe an atom or molecule embedded in a host material with which it can exchange electrons. They are basic to nanoscience as representations of quantum dots and molecular conductors and play an increasingly important role in the theory of "correlated electron" materials as auxiliary problems whose solution gives the "dynamical mean field" approximation to the self energy and local correlation functions. These applications require a method of solution which provides access to both high and low energy scales and is effective for wide classes of physically realistic models. The continuous-time quantum Monte Carlo algorithms reviewed in this article meet this challenge. We present derivations and descriptions of the algorithms in enough detail to allow other workers to write their own implementations, discuss the strengths and weaknesses of the methods, summarize the problems to which the new methods have been successfully applied and outline prospects for future applications.

1,116 citations


Journal ArticleDOI
24 Feb 2011-Nature
TL;DR: This work combines multi-qubit gates with optical pumping to implement coherent operations and dissipative processes and illustrates the ability to engineer the open-system dynamics through the dissipative preparation of entangled states, the simulation of coherent many-body spin interactions, and the quantum non-demolition measurement of multi- qubit observables.
Abstract: The control of quantum systems is of fundamental scientific interest and promises powerful applications and technologies. Impressive progress has been achieved in isolating quantum systems from the environment and coherently controlling their dynamics, as demonstrated by the creation and manipulation of entanglement in various physical systems. However, for open quantum systems, engineering the dynamics of many particles by a controlled coupling to an environment remains largely unexplored. Here we realize an experimental toolbox for simulating an open quantum system with up to five quantum bits (qubits). Using a quantum computing architecture with trapped ions, we combine multi-qubit gates with optical pumping to implement coherent operations and dissipative processes. We illustrate our ability to engineer the open-system dynamics through the dissipative preparation of entangled states, the simulation of coherent many-body spin interactions, and the quantum non-demolition measurement of multi-qubit observables. By adding controlled dissipation to coherent operations, this work offers novel prospects for open-system quantum simulation and computation. Every quantum system is inevitably coupled to its surrounding environment. Significant progress has been made in isolating systems from their environment and coherently controlling the dynamics of several qubits 1–4 . These achievements have enabled the realization of high-fidelity quantum gates and the implementation of small-scale quantum computing and communication devices, as well as the measurement-based probabilistic preparation of entangled states in atomic 5,6 , photonic 7 , NMR 8 and solid-state set-ups 9–11 . In particular,

878 citations


Book
21 Mar 2011
TL;DR: Non-Hermitian quantum mechanics (NHQM) as mentioned in this paper is an alternative to the standard Hermitian formalism of quantum mechanics, enabling the solution of otherwise difficult problems.
Abstract: Non-Hermitian quantum mechanics (NHQM) is an important alternative to the standard (Hermitian) formalism of quantum mechanics, enabling the solution of otherwise difficult problems. The first book to present this theory, it is useful to advanced graduate students and researchers in physics, chemistry and engineering. NHQM provides powerful numerical and analytical tools for the study of resonance phenomena - perhaps one of the most striking events in nature. It is especially useful for problems whose solutions cause extreme difficulties within the structure of a conventional Hermitian framework. NHQM has applications in a variety of fields, including optics, where the refractive index is complex; quantum field theory, where the parity-time (PT) symmetry properties of the Hamiltonian are investigated; and atomic and molecular physics and electrical engineering, where complex potentials are introduced to simplify numerical calculations.

824 citations


Journal ArticleDOI
29 Sep 2011-Nature
TL;DR: The preparation and measurement of a multi-spin quantum register in a low-temperature solid-state system is demonstrated by implementing resonant optical excitation techniques originally developed in atomic physics, and compatibility with qubit control is shown.
Abstract: Initialization and read-out of coupled quantum systems are essential ingredients for the implementation of quantum algorithms. Single-shot read-out of the state of a multi-quantum-bit (multi-qubit) register would allow direct investigation of quantum correlations (entanglement), and would give access to further key resources such as quantum error correction and deterministic quantum teleportation. Although spins in solids are attractive candidates for scalable quantum information processing, their single-shot detection has been achieved only for isolated qubits. Here we demonstrate the preparation and measurement of a multi-spin quantum register in a low-temperature solid-state system by implementing resonant optical excitation techniques originally developed in atomic physics. We achieve high-fidelity read-out of the electronic spin associated with a single nitrogen-vacancy centre in diamond, and use this read-out to project up to three nearby nuclear spin qubits onto a well-defined state. Conversely, we can distinguish the state of the nuclear spins in a single shot by mapping it onto, and subsequently measuring, the electronic spin. Finally, we show compatibility with qubit control: we demonstrate initialization, coherent manipulation and single-shot read-out in a single experiment on a two-qubit register, using techniques suitable for extension to larger registers. These results pave the way for a test of Bell's inequalities on solid-state spins and the implementation of measurement-based quantum information protocols.

690 citations


Journal ArticleDOI
TL;DR: In this paper, the authors derive quantum theory from purely informational principles and define a broad class of theories of information processing that can be regarded as standard, and one postulate (purification) singularly singles out quantum theory within this class.
Abstract: We derive quantum theory from purely informational principles. Five elementary axioms---causality, perfect distinguishability, ideal compression, local distinguishability, and pure conditioning---define a broad class of theories of information processing that can be regarded as standard. One postulate---purification---singles out quantum theory within this class.

662 citations


Journal ArticleDOI
09 Jun 2011-Nature
TL;DR: This method gives the wavefunction a straightforward and general definition in terms of a specific set of experimental operations, and shows that the concept is universal, being applicable to other degrees of freedom of the photon, and to other quantum systems—for example, electron spins, SQUIDs and trapped ions.
Abstract: The wavefunction, describing both the wave-like and the particle-like nature of everything in the Universe, is central to quantum theory. Physicists usually learn about it indirectly in tomographic experiments that measure only some aspects of its behaviour. Now a team from Canada's Institute for National Measurement Standards has developed a new and gentle technique that makes it possible to observe the wavefunction directly. They demonstrate the approach by measuring the transverse spatial wavefunction of a single photon. The discovery that the wavefunction can be probed directly provides a tool that could prove useful in a wide range of fields, and raises questions bordering on the philosophical about what the wavefunction actually is. The wavefunction is the complex distribution used to completely describe a quantum system, and is central to quantum theory. But despite its fundamental role, it is typically introduced as an abstract element of the theory with no explicit definition1,2. Rather, physicists come to a working understanding of the wavefunction through its use to calculate measurement outcome probabilities by way of the Born rule3. At present, the wavefunction is determined through tomographic methods4,5,6,7,8, which estimate the wavefunction most consistent with a diverse collection of measurements. The indirectness of these methods compounds the problem of defining the wavefunction. Here we show that the wavefunction can be measured directly by the sequential measurement of two complementary variables of the system. The crux of our method is that the first measurement is performed in a gentle way through weak measurement9,10,11,12,13,14,15,16,17,18, so as not to invalidate the second. The result is that the real and imaginary components of the wavefunction appear directly on our measurement apparatus. We give an experimental example by directly measuring the transverse spatial wavefunction of a single photon, a task not previously realized by any method. We show that the concept is universal, being applicable to other degrees of freedom of the photon, such as polarization or frequency, and to other quantum systems—for example, electron spins, SQUIDs (superconducting quantum interference devices) and trapped ions. Consequently, this method gives the wavefunction a straightforward and general definition in terms of a specific set of experimental operations19. We expect it to expand the range of quantum systems that can be characterized and to initiate new avenues in fundamental quantum theory.

646 citations



Journal ArticleDOI
TL;DR: In this article, the state of the art of diamond-based single-photon emitters and their fabrication methodologies are discussed, and the main challenges and perspectives for employing diamond emitters in quantum information processing are discussed.
Abstract: The exploitation of emerging quantum technologies requires efficient fabrication of key building blocks. Sources of single photons are extremely important across many applications as they can serve as vectors for quantum information—thereby allowing long-range (perhaps even global-scale) quantum states to be made and manipulated for tasks such as quantum communication or distributed quantum computation. At the single-emitter level, quantum sources also afford new possibilities in terms of nanoscopy and bio-marking. Color centers in diamond are prominent candidates to generate and manipulate quantum states of light, as they are a photostable solid-state source of single photons at room temperature. In this review, we discuss the state of the art of diamond-based single-photon emitters and highlight their fabrication methodologies. We present the experimental techniques used to characterize the quantum emitters and discuss their photophysical properties. We outline a number of applications including quantum key distribution, bio-marking and sub-diffraction imaging, where diamond-based single emitters are playing a crucial role. We conclude with a discussion of the main challenges and perspectives for employing diamond emitters in quantum information processing.

Journal ArticleDOI
TL;DR: In this paper, the decoherence in a single photon is controlled by rotating an optical filter, which can be used to tune the information flow between the photon and its environment.
Abstract: An open quantum system loses its ‘quantumness’ when information about the state leaks into its surroundings. Researchers now control this so-called decoherence in a single photon. By rotating an optical filter, the information flow between the photon and its environment can be tuned. This concept could be harnessed for future quantum technologies.

Journal ArticleDOI
TL;DR: In this paper, a set of pre-computed molecular integrals can be used to explicitly create a quantum circuit, i.e., a sequence of elementary quantum operations, that, when run on a quantum computer, obtains the energy of a molecular system with fixed nuclear geometry using the quantum phase estimation algorithm.
Abstract: Over the last century, a large number of physical and mathematical developments paired with rapidly advancing technology have allowed the field of quantum chemistry to advance dramatically. However, the lack of computationally efficient methods for the exact simulation of quantum systems on classical computers presents a limitation of current computational approaches. We report, in detail, how a set of pre-computed molecular integrals can be used to explicitly create a quantum circuit, i.e. a sequence of elementary quantum operations, that, when run on a quantum computer, obtains the energy of a molecular system with fixed nuclear geometry using the quantum phase estimation algorithm. We extend several known results related to this idea and discuss the adiabatic state preparation procedure for preparing the input states used in the algorithm. With current and near future quantum devices in mind, we provide a complete example using the hydrogen molecule of how a chemical Hamiltonian can be simulated using ...

Journal ArticleDOI
TL;DR: The design of new derivatives and recent experimental results on molecular nanomagnets are covered in this tutorial review through the keyhole of basic concepts of quantum information, such as the control of decoherence and entanglement at the (supra-)molecular level.
Abstract: Technological challenges for quantum information technologies lead us to consider aspects of molecular magnetism in a radically new perspective. The design of new derivatives and recent experimental results on molecular nanomagnets are covered in this tutorial review through the keyhole of basic concepts of quantum information, such as the control of decoherence and entanglement at the (supra-)molecular level.

Journal ArticleDOI
TL;DR: In this paper, a generalized uncertainty principle (GUP) consistent with string theory, black hole physics, and doubly special relativity theories was proposed to predict quantum gravity corrections to various quantum phenomena such as Lamb shift, simple harmonic oscillator, Landau levels, and tunneling current.
Abstract: Attempts to formulate a quantum theory of gravitation are collectively known as quantum gravity Various approaches to quantum gravity such as string theory and loop quantum gravity, as well as black hole physics and doubly special relativity theories predict a minimum measurable length, or a maximum observable momentum, and related modifications of the Heisenberg Uncertainty Principle to a so-called generalized uncertainty principle (GUP) We have proposed a GUP consistent with string theory, black hole physics, and doubly special relativity theories and have showed that this modifies all quantum mechanical Hamiltonians When applied to an elementary particle, it suggests that the space that confines it must be quantized, and in fact that all measurable lengths are quantized in units of a fundamental length (which can be the Planck length) On the one hand, this may signal the breakdown of the spacetime continuum picture near that scale, and on the other hand, it can predict an upper bound on the quantum gravity parameter in the GUP, from current observations Furthermore, such fundamental discreteness of space may have observable consequences at length scales much larger than the Planck scale Because this influences all the quantum Hamiltonians in an universal way, it predicts quantum gravity corrections to various quantum phenomena Therefore, in the present work we compute these corrections to the Lamb shift, simple harmonic oscillator, Landau levels, and the tunneling current in a scanning tunneling microscope

Journal ArticleDOI
TL;DR: This method provides unprecedented bounds for objective collapse models of the wave function by merging techniques and insights from cavity quantum optomechanics and matter-wave interferometry.
Abstract: We propose a method to prepare and verify spatial quantum superpositions of a nanometer-sized object separated by distances of the order of its size. This method provides unprecedented bounds for objective collapse models of the wave function by merging techniques and insights from cavity quantum optomechanics and matter-wave interferometry. An analysis and simulation of the experiment is performed taking into account standard sources of decoherence. We provide an operational parameter regime using present-day and planned technology.

Book ChapterDOI
TL;DR: Part V and VI are the culmination of this book, where all of the tools developed come into play for understanding many of the important results in quantum Shannon theory.
Abstract: The aim of this book is to develop "from the ground up" many of the major, exciting, pre- and post-millenium developments in the general area of study known as quantum Shannon theory. As such, we spend a significant amount of time on quantum mechanics for quantum information theory (Part II), we give a careful study of the important unit protocols of teleportation, super-dense coding, and entanglement distribution (Part III), and we develop many of the tools necessary for understanding information transmission or compression (Part IV). Parts V and VI are the culmination of this book, where all of the tools developed come into play for understanding many of the important results in quantum Shannon theory.

Journal ArticleDOI
TL;DR: This work continuously measure the state of a superconducting quantum bit coupled to a microwave readout cavity by using a fast, ultralow-noise parametric amplifier to enable quantum error correction and feedback--essential components of quantum information processing.
Abstract: We continuously measure the state of a superconducting quantum bit coupled to a microwave readout cavity by using a fast, ultralow-noise parametric amplifier. This arrangement allows us to observe quantum jumps between the qubit states in real time, and should enable quantum error correction and feedback--essential components of quantum information processing.

Journal ArticleDOI
TL;DR: A short review of recent developments of the Dicke model in quantum optics is presented in this paper, where the focus is on the model in a cavity at zero temperature and in the rotating wave approximation.
Abstract: A short review of recent developments of the Dicke model in quantum optics is presented. The focus is on the model in a cavity at zero temperature and in the rotating wave approximation. Topics discussed include spectroscopic structures, the giant quantum oscillator, entanglement and phase transitions.

Journal ArticleDOI
11 Aug 2011-Nature
TL;DR: The approach, which involves integrating the quantum control mechanism into the trapping device in a scalable manner, could be applied to quantum information processing, simulation and spectroscopy.
Abstract: Control over physical systems at the quantum level is important in fields as diverse as metrology, information processing, simulation and chemistry. For trapped atomic ions, the quantized motional and internal degrees of freedom can be coherently manipulated with laser light. Similar control is difficult to achieve with radio-frequency or microwave radiation: the essential coupling between internal degrees of freedom and motion requires significant field changes over the extent of the atoms' motion, but such changes are negligible at these frequencies for freely propagating fields. An exception is in the near field of microwave currents in structures smaller than the free-space wavelength, where stronger gradients can be generated. Here we first manipulate coherently (on timescales of 20 nanoseconds) the internal quantum states of ions held in a microfabricated trap. The controlling magnetic fields are generated by microwave currents in electrodes that are integrated into the trap structure. We also generate entanglement between the internal degrees of freedom of two atoms with a gate operation suitable for general quantum computation; the entangled state has a fidelity of 0.76(3), where the uncertainty denotes standard error of the mean. Our approach, which involves integrating the quantum control mechanism into the trapping device in a scalable manner, could be applied to quantum information processing, simulation and spectroscopy.

Journal ArticleDOI
TL;DR: An efficient strategy for controlling a vast range of nonintegrable quantum many-body one-dimensional systems that can be merged with state-of-the-art tensor network simulation methods such as the density matrix renormalization group is presented.
Abstract: We present an efficient strategy for controlling a vast range of nonintegrable quantum many-body one-dimensional systems that can be merged with state-of-the-art tensor network simulation methods such as the density matrix renormalization group. To demonstrate its potential, we employ it to solve a major issue in current optical-lattice physics with ultracold atoms: we show how to reduce by about 2 orders of magnitude the time needed to bring a superfluid gas into a Mott insulator state, while suppressing defects by more than 1 order of magnitude as compared to current experiments [T. Stoferle et al., Phys. Rev. Lett. 92, 130403 (2004)]. Finally, we show that the optimal pulse is robust against atom number fluctuations.

Journal ArticleDOI
02 Jun 2011-Nature
TL;DR: The main result is that the work cost of erasure is determined by the entropy of the system, conditioned on the quantum information an observer has about it, which gives a direct thermodynamic significance to conditional entropies, originally introduced in information theory.
Abstract: The heat generated by computations is not only an obstacle to circuit miniaturization but also a fundamental aspect of the relationship between information theory and thermodynamics. In principle, reversible operations may be performed at no energy cost; given that irreversible computations can always be decomposed into reversible operations followed by the erasure of data, the problem of calculating their energy cost is reduced to the study of erasure. Landauer's principle states that the erasure of data stored in a system has an inherent work cost and therefore dissipates heat. However, this consideration assumes that the information about the system to be erased is classical, and does not extend to the general case where an observer may have quantum information about the system to be erased, for instance by means of a quantum memory entangled with the system. Here we show that the standard formulation and implications of Landauer's principle are no longer valid in the presence of quantum information. Our main result is that the work cost of erasure is determined by the entropy of the system, conditioned on the quantum information an observer has about it. In other words, the more an observer knows about the system, the less it costs to erase it. This result gives a direct thermodynamic significance to conditional entropies, originally introduced in information theory. Furthermore, it provides new bounds on the heat generation of computations: because conditional entropies can become negative in the quantum case, an observer who is strongly correlated with a system may gain work while erasing it, thereby cooling the environment.

Journal ArticleDOI
TL;DR: In this paper, the authors give quantum discord its first information-theoretic operational meaning in terms of entanglement consumption in an extended quantum-state-merging protocol and further relate the asymmetry of quantum discord with the performance imbalance in quantum state merging and dense coding.
Abstract: Quantum discord quantifies nonclassical correlations beyond the standard classification of quantum states into entangled and unentangled. Although it has received considerable attention, it still lacks any precise interpretation in terms of some protocol in which quantum features are relevant. Here we give quantum discord its first information-theoretic operational meaning in terms of entanglement consumption in an extended quantum-state-merging protocol. We further relate the asymmetry of quantum discord with the performance imbalance in quantum state merging and dense coding.

Journal ArticleDOI
12 May 2011-Nature
TL;DR: The most fundamental implementation of such a quantum memory is demonstrated, by mapping arbitrary polarization states of light into and out of a single atom trapped inside an optical cavity, which makes the system a versatile quantum node with excellent prospects for applications in optical quantum gates and quantum repeaters.
Abstract: Efficient, high-fidelity storage and exchange of quantum information between light and an optical quantum memory is essential for long-distance quantum communication, quantum networking and distributed quantum computing. Stephan Ritter and colleagues demonstrate the most fundamental implementation of such a quantum memory, mapping arbitrary polarization states of light into and out of single atoms trapped inside an optical cavity. The high fidelity (93%) and relatively long qubit coherence time of this atomic memory make it a versatile quantum node, with excellent prospects for applications in optical quantum gates and quantum repeaters. The faithful storage of a quantum bit (qubit) of light is essential for long-distance quantum communication, quantum networking and distributed quantum computing1. The required optical quantum memory must be able to receive and recreate the photonic qubit; additionally, it must store an unknown quantum state of light better than any classical device. So far, these two requirements have been met only by ensembles of material particles that store the information in collective excitations2,3,4,5,6,7. Recent developments, however, have paved the way for an approach in which the information exchange occurs between single quanta of light and matter8,9,10,11,12,13. This single-particle approach allows the material qubit to be addressed, which has fundamental advantages for realistic implementations. First, it enables a heralding mechanism that signals the successful storage of a photon by means of state detection14,15,16; this can be used to combat inevitable losses and finite efficiencies. Second, it allows for individual qubit manipulations, opening up avenues for in situ processing of the stored quantum information. Here we demonstrate the most fundamental implementation of such a quantum memory, by mapping arbitrary polarization states of light into and out of a single atom trapped inside an optical cavity. The memory performance is tested with weak coherent pulses and analysed using full quantum process tomography. The average fidelity is measured to be 93%, and low decoherence rates result in qubit coherence times exceeding 180 microseconds. This makes our system a versatile quantum node with excellent prospects for applications in optical quantum gates17 and quantum repeaters18.

Journal ArticleDOI
TL;DR: This review discusses to what extent the ideas in quantum computation, now a well-established field, have been applied to chemical problems and describes algorithms that achieve significant advantages for the electronic-structure problem, the simulation of chemical dynamics, protein folding, and other tasks.
Abstract: The difficulty of simulating quantum systems, well known to quantum chemists, prompted the idea of quantum computation. One can avoid the steep scaling associated with the exact simulation of increasingly large quantum systems on conventional computers, by mapping the quantum system to another, more controllable one. In this review, we discuss to what extent the ideas in quantum computation, now a well-established field, have been applied to chemical problems. We describe algorithms that achieve significant advantages for the electronic-structure problem, the simulation of chemical dynamics, protein folding, and other tasks. Although theory is still ahead of experiment, we outline recent advances that have led to the first chemical calculations on small quantum information processors.

Journal ArticleDOI
TL;DR: An operational interpretation of quantum discord based on the quantum state merging protocol is presented, which has an intuitive explanationbased on the strong subadditivity of von Neumann entropy and used to provide operational interpretations of other quantities like the local purity and quantum deficit.
Abstract: We present an operational interpretation of quantum discord based on the quantum state merging protocol. Quantum discord is the markup in the cost of quantum communication in the process of quantum state merging, if one discards relevant prior information. Our interpretation has an intuitive explanation based on the strong subadditivity of von Neumann entropy. We use our result to provide operational interpretations of other quantities like the local purity and quantum deficit. Finally, we discuss in brief some instances where our interpretation is valid in the single-copy scenario.

Journal ArticleDOI
TL;DR: In this paper, the authors discuss different techniques for sensitive position detection and give an overview of the cooling techniques that are being employed, including sideband cooling and active feedback cooling, and conclude with an outlook of how state-of-the-art mechanical resonators can be improved to study quantum physics.
Abstract: Mechanical systems are ideal candidates for studying quantumbehavior of macroscopic objects. To this end, a mechanical resonator has to be cooled to its ground state and its position has to be measured with great accuracy. Currently, various routes to reach these goals are being explored. In this review, we discuss different techniques for sensitive position detection and we give an overview of the cooling techniques that are being employed. The latter include sideband cooling and active feedback cooling. The basic concepts that are important when measuring on mechanical systems with high accuracy and/or at very low temperatures, such as thermal and quantum noise, linear response theory, and backaction, are explained. From this, the quantum limit on linear position detection is obtained and the sensitivities that have been achieved in recent opto and nanoelectromechanical experiments are compared to this limit. The mechanical resonators that are used in the experiments range from meter-sized gravitational wave detectors to nanomechanical systems that can only be read out using mesoscopic devices such as single-electron transistors or superconducting quantum interference devices. A special class of nanomechanical systems are bottom-up fabricated carbon-based devices, which have very high frequencies and yet a large zero-point motion, making them ideal for reaching the quantum regime. The mechanics of some of the different mechanical systems at the nanoscale is studied. We conclude this review with an outlook of how state-of-the-art mechanical resonators can be improved to study quantum {\it mechanics}.

Journal ArticleDOI
TL;DR: In this paper, a global measure for quantum correlations in multipartite systems is proposed, which is obtained by suitably recasting the quantum discord in terms of relative entropy and local von Neumann measurements.
Abstract: We propose a global measure for quantum correlations in multipartite systems, which is obtained by suitably recasting the quantum discord in terms of relative entropy and local von Neumann measurements. The measure is symmetric with respect to subsystem exchange and is shown to be nonnegative for an arbitrary state. As an illustration, we consider tripartite correlations in the Werner-GHZ (Greenberger-Horne-Zeilinger) state and multipartite correlations at quantum criticality. In particular, in contrast with the pairwise quantum discord, we show that the global quantum discord is able to characterize the infinite-order quantum phase transition in the Ashkin-Teller spin chain.

Book
Jørgen Rammer1
01 Mar 2011
TL;DR: In this paper, the authors propose a real-time formalism for quantum fields and Green's functions with path integrals and generating functionals, and analyze the properties of Green's function.
Abstract: Preface 1. Quantum fields 2. Operators on the multi-particle state space 3. Quantum dynamics and Green's functions 4. Non-equilibrium theory 5. Real-time formalism 6. Linear response theory 7. Quantum kinetic equations 8. Non-equilibrium superconductivity 9. Diagrammatics and generating functionals 10. Effective action 11. Disordered conductors 12. Classical statistical dynamics Appendices: A. Path integrals B. Retarded and advanced propagators C. Analytic properties of Green's functions Bibliography Index.