scispace - formally typeset
Search or ask a question
Topic

Open Shortest Path First

About: Open Shortest Path First is a research topic. Over the lifetime, 2038 publications have been published within this topic receiving 48384 citations. The topic is also known as: OSPF & OSPFIGP.


Papers
More filters
01 Jul 1994
TL;DR: This document, together with its companion document, "Application of the Border Gateway Protocol in the Internet", define an inter- autonomous system routing protocol for the Internet.
Abstract: This document, together with its companion document, "Application of the Border Gateway Protocol in the Internet", define an inter- autonomous system routing protocol for the Internet.

2,832 citations

01 Apr 1998
TL;DR: This memo documents version 2 of the OSPF protocol, a link-state routing protocol designed to be run internal to a single Autonomous System.
Abstract: This memo documents version 2 of the OSPF protocol. OSPF is a link-state routing protocol. It is designed to be run internal to a single Autonomous System. Each OSPF router maintains an identical database describing the Autonomous System's topology. From this database, a routing table is calculated by constructing a shortest- path tree.

2,413 citations

Proceedings ArticleDOI
09 Apr 1997
TL;DR: The proposed protocol is a new distributed routing protocol for mobile, multihop, wireless networks that is highly adaptive, efficient and scalable; being best-suited for use in large, dense, mobile networks.
Abstract: We present a new distributed routing protocol for mobile, multihop, wireless networks. The protocol is one of a family of protocols which we term "link reversal" algorithms. The protocol's reaction is structured as a temporally-ordered sequence of diffusing computations; each computation consisting of a sequence of directed link reversals. The protocol is highly adaptive, efficient and scalable; being best-suited for use in large, dense, mobile networks. In these networks, the protocol's reaction to link failures typically involves only a localized "single pass" of the distributed algorithm. This capability is unique among protocols which are stable in the face of network partitions, and results in the protocol's high degree of adaptivity. This desirable behavior is achieved through the novel use of a "physical or logical clock" to establish the "temporal order" of topological change events which is used to structure (or order) the algorithm's reaction to topological changes. We refer to the protocol as the temporally-ordered routing algorithm (TORA).

2,211 citations

Proceedings ArticleDOI
26 Mar 2000
TL;DR: Surprisingly it turned out that for the proposed AT&T WorldNet backbone, weight settings that performed within a few percent from that of the optimal general routing where the flow for each demand is optimally distributed over all paths between source and destination.
Abstract: Open shortest path first (OSPF) is the most commonly used intra-domain Internet routing protocol. Traffic flow is routed along shortest paths, splitting flow at nodes where several outgoing links are on shortest paths to the destination. The weights of the links, and thereby the shortest path routes, can be changed by the network operator. The weights could be set proportional to their physical distances, but often the main goal is to avoid congestion, i.e., overloading of links, and the standard heuristic recommended by Cisco is to make the weight of a link inversely proportional to its capacity. Our starting point was a proposed AT&T WorldNet backbone with demands projected from previous measurements. The desire was to optimize the weight setting based on the projected demands. We showed that optimizing the weight settings for a given set of demands is NP-hard, so we resorted to a local search heuristic. Surprisingly it turned out that for the proposed AT&T WorldNet backbone, we found weight settings that performed within a few percent from that of the optimal general routing where the flow for each demand is optimally distributed over all paths between source and destination. This contrasts the common belief that OSPF routing leads to congestion and it shows that for the network and demand matrix studied we cannot get a substantially better load balancing by switching to the proposed more flexible multi-protocol label switching (MPLS) technologies. Our techniques were also tested on synthetic internetworks, based on a model of Zegura et al., (1996), for which we did not always get quite as close to the optimal general routing.

1,200 citations

01 Jun 1997
TL;DR: This document specifies Protocol Independent Multicast - Sparse Mode (PIM-SM), a multicast routing protocol that can use the underlying unicast routing information base or a separate multicast- capable routing Information base.
Abstract: This document specifies Protocol Independent Multicast - Sparse Mode (PIM-SM). PIM-SM is a multicast routing protocol that can use the underlying unicast routing information base or a separate multicast- capable routing information base. It builds unidirectional shared trees rooted at a Rendezvous Point (RP) per group, and optionally creates shortest-path trees per source. This document obsoletes RFC 2362, an Experimental version of PIM-SM. [STANDARDS-TRACK]

1,174 citations


Network Information
Related Topics (5)
Network packet
159.7K papers, 2.2M citations
86% related
Wireless network
122.5K papers, 2.1M citations
84% related
Wireless ad hoc network
49K papers, 1.1M citations
83% related
Wireless sensor network
142K papers, 2.4M citations
83% related
Server
79.5K papers, 1.4M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202316
202252
202136
202065
201980
201882