scispace - formally typeset
Search or ask a question
Topic

Operator (computer programming)

About: Operator (computer programming) is a research topic. Over the lifetime, 40896 publications have been published within this topic receiving 671452 citations. The topic is also known as: operator symbol & operator name.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the existence of solutions for equations driven by a non-local integrodifferential operator with homogeneous Dirichlet boundary conditions was studied and a nonlinear solution for them using the Mountain Pass Theorem was found.

629 citations

Proceedings ArticleDOI
03 Apr 2006
TL;DR: This paper proposes a new primitive operator which can be used as a foundation to implement similarity joins according to a variety of popular string similarity functions, and notions of similarity which go beyond textual similarity.
Abstract: Data cleaning based on similarities involves identification of "close" tuples, where closeness is evaluated using a variety of similarity functions chosen to suit the domain and application. Current approaches for efficiently implementing such similarity joins are tightly tied to the chosen similarity function. In this paper, we propose a new primitive operator which can be used as a foundation to implement similarity joins according to a variety of popular string similarity functions, and notions of similarity which go beyond textual similarity. We then propose efficient implementations for this operator. In an experimental evaluation using real datasets, we show that the implementation of similarity joins using our operator is comparable to, and often substantially better than, previous customized implementations for particular similarity functions.

621 citations

Journal ArticleDOI
TL;DR: In this paper, the world-volume geometries of D-branes can be reconstructed within the microscopic framework where Dbranes are described through boundary conformal field theory.
Abstract: In this note we explain how world-volume geometries of D-branes can be reconstructed within the microscopic framework where D-branes are described through boundary conformal field theory. We extract the (non-commutative) world-volume algebras from the operator product expansions of open string vertex operators. For branes in a flat background with constant non-vanishing B-field, the operator products are computed perturbatively to all orders in the field strength. The resulting series coincides with Kontsevich's presentation of the Moyal product. After extending these considerations to fermionic fields we conclude with some remarks on the generalization of our approach to curved backgrounds.

611 citations

Journal ArticleDOI
TL;DR: In this paper, a projection algorithm is proposed to minimize a proximity function that measures the distance of a point from all sets in the image space, which generalizes the convex feasibility problem as well as two-sets split feasibility problem.
Abstract: The multiple-sets split feasibility problem requires finding a point closest to a family of closed convex sets in one space such that its image under a linear transformation will be closest to another family of closed convex sets in the image space. It can be a model for many inverse problems where constraints are imposed on the solutions in the domain of a linear operator as well as in the operator's range. It generalizes the convex feasibility problem as well as the two-sets split feasibility problem. We propose a projection algorithm that minimizes a proximity function that measures the distance of a point from all sets. The formulation, as well as the algorithm, generalize earlier work on the split feasibility problem. We offer also a generalization to proximity functions with Bregman distances. Application of the method to the inverse problem of intensity-modulated radiation therapy treatment planning is studied in a separate companion paper and is here only described briefly.

608 citations

Journal ArticleDOI
TL;DR: The proposed generic parent-centric recombination operator (PCX) and a steady-state, elite-preserving, scalable, and computationally fast population-alteration model (G3 model) are proposed and found to consistently and reliably perform better than all other methods used in the study.
Abstract: Due to increasing interest in solving real-world optimization problems using evolutionary algorithms (EAs), researchers have recently developed a number of real-parameter genetic algorithms (GAs). In these studies, the main research effort is spent on developing an efficient recombination operator. Such recombination operators use probability distributions around the parent solutions to create an offspring. Some operators emphasize solutions at the center of mass of parents and some around the parents. In this paper, we propose a generic parent-centric recombination operator (PCX) and a steady-state, elite-preserving, scalable, and computationally fast population-alteration model (we call the G3 model). The performance of the G3 model with the PCX operator is investigated on three commonly used test problems and is compared with a number of evolutionary and classical optimization algorithms including other real-parameter GAs with the unimodal normal distribution crossover (UNDX) and the simplex crossover (SPX) operators, the correlated self-adaptive evolution strategy, the covariance matrix adaptation evolution strategy (CMA-ES), the differential evolution technique, and the quasi-Newton method. The proposed approach is found to consistently and reliably perform better than all other methods used in the study. A scale-up study with problem sizes up to 500 variables shows a polynomial computational complexity of the proposed approach. This extensive study clearly demonstrates the power of the proposed technique in tackling real-parameter optimization problems.

606 citations


Network Information
Related Topics (5)
Bounded function
77.2K papers, 1.3M citations
91% related
Eigenvalues and eigenvectors
51.7K papers, 1.1M citations
91% related
Differential equation
88K papers, 2M citations
89% related
Matrix (mathematics)
105.5K papers, 1.9M citations
88% related
Nonlinear system
208.1K papers, 4M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202236
20212,210
20202,380
20192,310
20182,164
20171,834