scispace - formally typeset
Search or ask a question
Topic

Operator (computer programming)

About: Operator (computer programming) is a research topic. Over the lifetime, 40896 publications have been published within this topic receiving 671452 citations. The topic is also known as: operator symbol & operator name.


Papers
More filters
Posted Content
TL;DR: The cube operator as discussed by the authors generalizes the histogram, cross-tabulation, roll-up, drill-down, and sub-total constructs found in most report writers, and treats each of the N aggregation attributes as a dimension of N-space.
Abstract: Data analysis applications typically aggregate data across many dimensions looking for anomalies or unusual patterns. The SQL aggregate functions and the GROUP BY operator produce zero-dimensional or one-dimensional aggregates. Applications need the N-dimensional generalization of these operators. This paper defines that operator, called the data cube or simply cube. The cube operator generalizes the histogram, cross-tabulation, roll-up, drill-down, and sub-total constructs found in most report writers. The novelty is that cubes are relations. Consequently, the cube operator can be imbedded in more complex non-procedural data analysis programs. The cube operator treats each of the N aggregation attributes as a dimension of N-space. The aggregate of a particular set of attribute values is a point in this space. The set of points forms an N-dimensional cube. Super-aggregates are computed by aggregating the N-cube to lower dimensional spaces. This paper (1) explains the cube and roll-up operators, (2) shows how they fit in SQL, (3) explains how users can define new aggregate functions for cubes, and (4) discusses efficient techniques to compute the cube. Many of these features are being added to the SQL Standard.

1,870 citations

Journal ArticleDOI
TL;DR: The algorithms presented here are based on the recently developed theory of wavelets and are applicable to all Calderon-Zygmund and pseudo-differential operators, and indicate that many previously intractable problems become manageable with the techniques presented here.
Abstract: A class of algorithms is introduced for the rapid numerical application of a class of linear operators to arbitrary vectors. Previously published schemes of this type utilize detailed analytical information about the operators being applied and are specific to extremely narrow classes of matrices. In contrast, the methods presented here are based on the recently developed theory of wavelets and are applicable to all Calderon-Zygmund and pseudo-differential operators. The algorithms of this paper require order O(N) or O(N log N) operations to apply an N × N matrix to a vector (depending on the particular operator and the version of the algorithm being used), and our numerical experiments indicate that many previously intractable problems become manageable with the techniques presented here.

1,841 citations

Journal ArticleDOI
TL;DR: The ways in which automation of industrial processes may expand rather than eliminate problems with the human operator are discussed.

1,816 citations

Journal ArticleDOI
TL;DR: In this paper, a canonical transformation on the Dirac Hamiltonian for a free particle is obtained in which positive and negative energy states are separately represented by two-component wave functions.
Abstract: By a canonical transformation on the Dirac Hamiltonian for a free particle, a representation of the Dirac theory is obtained in which positive and negative energy states are separately represented by two-component wave functions. Playing an important role in the new representation are new operators for position and spin of the particle which are physically distinct from these operators in the conventional representation. The components of the time derivative of the new position operator all commute and have for eigenvalues all values between $\ensuremath{-}c$ and $c$. The new spin operator is a constant of the motion unlike the spin operator in the conventional representation. By a comparison of the new Hamiltonian with the non-relativistic Pauli-Hamiltonian for particles of spin \textonehalf{}, one finds that it is these new operators rather than the conventional ones which pass over into the position and spin operators in the Pauli theory in the non-relativistic limit. The transformation of the new representation is also made in the case of interaction of the particle with an external electromagnetic field. In this way the proper non-relativistic Hamiltonian (essentially the Pauli-Hamiltonian) is obtained in the non-relativistic limit. The same methods may be applied to a Dirac particle interacting with any type of external field (various meson fields, for example) and this allows one to find the proper non-relativistic Hamiltonian in each such case. Some light is cast on the question of why a Dirac electron shows some properties characteristic of a particle of finite extension by an examination of the relationship between the new and the conventional position operators.

1,715 citations

Journal ArticleDOI
TL;DR: In this paper, it is shown that consistency between the tangent operator and the integration algorithm employed in the solution of the incremental problem plays crucial role in preserving the quadratic rate of asymptotic convergence of iterative solution schemes based upon Newton's method.

1,702 citations


Network Information
Related Topics (5)
Bounded function
77.2K papers, 1.3M citations
91% related
Eigenvalues and eigenvectors
51.7K papers, 1.1M citations
91% related
Differential equation
88K papers, 2M citations
89% related
Matrix (mathematics)
105.5K papers, 1.9M citations
88% related
Nonlinear system
208.1K papers, 4M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202236
20212,210
20202,380
20192,310
20182,164
20171,834