scispace - formally typeset
Search or ask a question
Topic

Operator (computer programming)

About: Operator (computer programming) is a research topic. Over the lifetime, 40896 publications have been published within this topic receiving 671452 citations. The topic is also known as: operator symbol & operator name.


Papers
More filters
Journal ArticleDOI
TL;DR: The quantum alternating operator ansatz (QOANSatz) as discussed by the authors is a generalization of the original quantum approximate optimization algorithm, which alternates between applying a cost function based Hamiltonian and a mixing Hamiltonian.
Abstract: The next few years will be exciting as prototype universal quantum processors emerge, enabling the implementation of a wider variety of algorithms. Of particular interest are quantum heuristics, which require experimentation on quantum hardware for their evaluation and which have the potential to significantly expand the breadth of applications for which quantum computers have an established advantage. A leading candidate is Farhi et al.’s quantum approximate optimization algorithm, which alternates between applying a cost function based Hamiltonian and a mixing Hamiltonian. Here, we extend this framework to allow alternation between more general families of operators. The essence of this extension, the quantum alternating operator ansatz, is the consideration of general parameterized families of unitaries rather than only those corresponding to the time evolution under a fixed local Hamiltonian for a time specified by the parameter. This ansatz supports the representation of a larger, and potentially more useful, set of states than the original formulation, with potential long-term impact on a broad array of application areas. For cases that call for mixing only within a desired subspace, refocusing on unitaries rather than Hamiltonians enables more efficiently implementable mixers than was possible in the original framework. Such mixers are particularly useful for optimization problems with hard constraints that must always be satisfied, defining a feasible subspace, and soft constraints whose violation we wish to minimize. More efficient implementation enables earlier experimental exploration of an alternating operator approach, in the spirit of the quantum approximate optimization algorithm, to a wide variety of approximate optimization, exact optimization, and sampling problems. In addition to introducing the quantum alternating operator ansatz, we lay out design criteria for mixing operators, detail mappings for eight problems, and provide a compendium with brief descriptions of mappings for a diverse array of problems.

233 citations

Journal ArticleDOI
TL;DR: A succinct unified review of the theory of radiation boundary operators is provided in this paper, where the authors demonstrate the effectiveness of higher-order operators in truncating finite-difference time-domain grids.
Abstract: A succinct unified review is provided of the theory of radiation boundary operators. With the recent introduction of the on-surface radiation condition (OSRC) method and the continued growth of finite-difference and finite-element techniques for modeling electromagnetic wave scattering problems, the understanding and use of radiation boundary operators has become increasingly important. Results are presented to illustrate the application of radiation boundary operators in both these areas. Recent OSRC results include analysis of the scattering behavior of both electrically small and large cylinders, a reactively loaded acoustic sphere, and a simple reentrant duct. Radiation boundary operator results include the demonstration of the effectiveness of higher-order operators in truncating finite-difference time-domain grids. >

232 citations

Journal ArticleDOI
Hisaya Fujioka1
TL;DR: Improved stability conditions are derived for sampled-data feedback control systems with uncertainly time-varying sampling intervals by exploiting the passivity-type property of the operator arising in the input-delay approach to the system in addition to the gain of theoperator.

232 citations

Proceedings Article
26 Feb 2020
TL;DR: The key innovation in this work is that a single set of network parameters, within a carefully designed network architecture, may be used to describe mappings between infinite-dimensional spaces and between different finite-dimensional approximations of those spaces.
Abstract: The classical development of neural networks has been primarily for mappings between a finite-dimensional Euclidean space and a set of classes, or between two finite-dimensional Euclidean spaces. The purpose of this work is to generalize neural networks so that they can learn mappings between infinite-dimensional spaces (operators). The key innovation in our work is that a single set of network parameters, within a carefully designed network architecture, may be used to describe mappings between infinite-dimensional spaces and between different finite-dimensional approximations of those spaces. We formulate approximation of the infinite-dimensional mapping by composing nonlinear activation functions and a class of integral operators. The kernel integration is computed by message passing on graph networks. This approach has substantial practical consequences which we will illustrate in the context of mappings between input data to partial differential equations (PDEs) and their solutions. In this context, such learned networks can generalize among different approximation methods for the PDE (such as finite difference or finite element methods) and among approximations corresponding to different underlying levels of resolution and discretization. Experiments confirm that the proposed graph kernel network does have the desired properties and show competitive performance compared to the state of the art solvers.

231 citations

Journal ArticleDOI
TL;DR: In this paper, iterative methods for the solution of symmetric positive definite problems on a space % which are defined in terms of products of operators defined with respect to a number of subspaces are considered.
Abstract: In this paper, we consider iterative methods for the solution of symmetric positive definite problems on a space % which are defined in terms of products of operators defined with respect to a number of subspaces. The simplest algorithm of this sort has an error-reducing operator which is the product of orthogonal projections onto the complement of the subspaces. New normreduction estimates for these iterative techniques will be presented in an abstract setting. Applications are given for overlapping Schwarz algorithms with many subregions for finite element approximation of second-order elliptic problems.

231 citations


Network Information
Related Topics (5)
Bounded function
77.2K papers, 1.3M citations
91% related
Eigenvalues and eigenvectors
51.7K papers, 1.1M citations
91% related
Differential equation
88K papers, 2M citations
89% related
Matrix (mathematics)
105.5K papers, 1.9M citations
88% related
Nonlinear system
208.1K papers, 4M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202236
20212,210
20202,380
20192,310
20182,164
20171,834