scispace - formally typeset
Search or ask a question
Topic

Optical Carrier transmission rates

About: Optical Carrier transmission rates is a research topic. Over the lifetime, 2463 publications have been published within this topic receiving 33293 citations.


Papers
More filters
Journal ArticleDOI
Wei Li, Lixian Wang, Ming Li, Hui Wang, Ninghua Zhu 
TL;DR: In this article, a photonic approach was proposed to generate binary phase-coded microwave signals with large frequency tunability using a dual-parallel Mach-Zehnder modulator (DPMZM).
Abstract: We present a photonic approach to generating binary phase-coded microwave signals with large frequency tunability using a dual-parallel Mach-Zehnder modulator (DPMZM). The DPMZM consists of a pair of sub-MZMs embedded in the two arms of a parent MZM. In our scheme, one of the sub-MZMs is fed by a sinusoidal microwave signal to be phase-coded, and the other sub-MZM is driven by a rectangular coding signal. The optical signals from the two sub-MZMs are destructively interfered by adjusting the dc bias of the parent MZM. As a result, the optical carrier is binary phase coded. A binary phase-coded microwave signal is generated by beating between the optical carrier and the sidebands. The carrier frequency of the phase-coded microwave signal is widely tunable. Phase-coded microwave signals with two different frequencies at 10 and 20 GHz are experimentally generated, respectively.

40 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a radio-over-fiber system to provide full-duplex services by using optical differential phase-shift keying modulation format at the central station for downstream and on-off keying remodulation of the downlink carrier at the base station (BS) for upstream.
Abstract: We propose a novel radio-over-fiber system to provide full-duplex services by using optical differential phase-shift keying modulation format at the central station for downstream and on-off keying remodulation of the downlink carrier at the base station (BS) for upstream. The optical carrier suppression modulation scheme is employed to simultaneously generate and up-convert 40-GHz optical millimeter wave. As the same optical carrier is used for both uplink and downlink, no additional light source is required at the BS, which greatly reduces the cost and simplifies the overall system. Simulations and experimental results show that the bidirectional 2.5-Gb/s data is successfully transmitted over 40-km single-mode fiber (SMF-28) with less than 2-dB power penalty

40 citations

Journal ArticleDOI
TL;DR: In this paper, a general time-domain transfer matrix model is presented which is able to handle waves perturbed by a locally uniform medium and which is particularly well adapted to equivalent circuit implementations.
Abstract: A general time-domain transfer matrix model is presented which is able to handle waves perturbed by a locally uniform medium and which is particularly well adapted to equivalent circuit implementations. We use this model for the simulation of a picosecond pulse propagating through a semiconductor optical amplifier (SOA). The signal propagation through the SOA is described by an envelope propagation equation, taking into account the optical carrier's wavelength evolution (modulated wavelenght division multiplexing spectrum consideration). We present the SOA equivalent circuit and its implementation under a commercially available software. The SOA is described through the wideband definition of all parameters which makes it comparable to a real component. Simulations have been validated with experimental results over at least 60 nm. We simulate both amplitude and phase evolutions of a picosecond pulse and a continuous-wave probe at various pulse's optical carrier wavelengths. We show a strong influence of the imaginary part of the complex time delay on the phase variations, and as a consequence on the additional spectral red or blue shift.

39 citations

Journal ArticleDOI
TL;DR: A numerical and experimental evaluation of message encryption by phase modulation, using a chaotic optical carrier generated by a laser subject to delayed optical feedback, offers better security than the conventional amplitude masking.
Abstract: We present a numerical and experimental evaluation of message encryption by phase modulation, using a chaotic optical carrier generated by a laser subject to delayed optical feedback. This method offers better security than the conventional amplitude masking, where the signal is simply added to the chaotic waveform

38 citations

Patent
30 Sep 1982
TL;DR: An optical downconverter with very wide bandwidth operable to separately ically downconvert individual spectrum sections of an RF spectrum, comprising the steps of modulating an optical carrier with the RF spectral width to be downconverted, spatially separating via optical gratings the different sections of the spectrum of the optical carrier sidebands into a plurality of optical channels, generating a different phase-coherent optical local oscillator signal for each optical channel at an appropriate frequency such that the difference between the LO frequency and the particular spectrum section on the given optical channel is equal to a predetermined difference
Abstract: An optical downconverter with very wide bandwidth operable to separately ically downconvert individual spectrum sections of an RF spectrum, comprising the steps of modulating an optical carrier with the RF spectral width to be downconverted, spatially separating via optical gratings the different sections of the spectrum of the optical carrier sidebands into a plurality of optical channels, generating a different phase-coherent optical local oscillator signal for each optical channel at an appropriate frequency such that the difference between the LO frequency and the particular spectrum section on the given optical channel is equal to a predetermined difference frequency; and mixing each optical channel with its appropriate frequency L.O. and detecting the difference frequency resulting therefrom.

38 citations

Network Information
Related Topics (5)
Optical fiber
167K papers, 1.8M citations
89% related
Photonics
37.9K papers, 797.9K citations
88% related
Photonic crystal
43.4K papers, 887K citations
86% related
Amplifier
163.9K papers, 1.3M citations
83% related
Refractive index
51.5K papers, 774K citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202322
202237
202168
2020134
2019156
2018141