scispace - formally typeset
Search or ask a question
Topic

Optical Carrier transmission rates

About: Optical Carrier transmission rates is a research topic. Over the lifetime, 2463 publications have been published within this topic receiving 33293 citations.


Papers
More filters
Patent
02 Mar 1993
TL;DR: In this paper, an integrated optical filter was proposed for improving the signal-to-noise ratio (SNR) and dynamic range of an optical fiber system, which substantially attenuates the carrier frequency while passing light at the frequency of the modulated side bands.
Abstract: A method and apparatus for improving the signal-to-noise ratio (SNR) and dynamic range of an optical fiber system. An optical fiber system (10) includes a laser(12) that produces a coherent light signal conveyed over an optical fiber (14) to a Mach-Zehnder modulator (16). An input signal modulates the coherent light, producing modulated side bands, which together with the carrier comprise a modulated light signal. The modulated light signal is filtered using an integrated optical filter (24) that substantially attenuates the carrier frequency, while passing light at the frequency of the modulated side bands. A detector (28) demodulates the filtered light with a substantially greater SNR than would otherwise have been possible. In one preferred form of the invention, the integrated optical filter comprises an imbalanced interferometer (40), and in another embodiment, tile interferometer produces imperfect nulls aligned with the carrier frequency. A relatively higher power laser(12) can be used without damage to detector (28), since the integrated optical filter substantially reduces the average power of the modulated light by attenuating the carrier, thereby enhancing SNR and dynamic range of the system.

37 citations

Journal ArticleDOI
TL;DR: In this article, the direct data modulation of a two-tone optical carrier is analyzed and shown to have high tolerance to fiber dispersion combined with low complexity, and it is shown to be suitable for the provision of fiber/radio access networks.
Abstract: Application of optical millimetre-wave generation to the provision of fibre/radio access networks will require that broadband data can be imposed on an optical millimetre-wave carrier. The authors analyse the direct data modulation of a two-tone optical carrier and show high tolerance to fibre dispersion combined with low complexity.

37 citations

Proceedings ArticleDOI
10 Jun 1994
TL;DR: In this article, the fiber optic Bragg reflection gratings are written holographically into the core of a single-mode fiber at various positions along its length and an optical carrier is modulated by the RF signal of interest and launched into this delay line fiber.
Abstract: We present a novel concept, the fiber optic Bragg grating true- time-delay (TTD) element, for implementing true time delay in the distribution network of an optically fed phased array antenna. the device utilizes narrowband optical Bragg reflection gratings written holographically into the core of a single-mode fiber at various positions along its length. An optical carrier is modulated by the RF signal of interest and launched into this delay-line fiber. The desired RF time delay may be realized by wavelength-selectable nature of the TTD device offers the possibility for simplified beamsteering control and channel multiplexing.

37 citations

Journal ArticleDOI
TL;DR: In this article, a new optical millimeter-wave generation scheme to double the beating frequency without suppressing the carrier by taking advantage of the out-of-phase property between sidebands of a phase-modulated optical carrier is proposed for the first time.
Abstract: A new optical millimeter-wave generation scheme to double the beating frequency without suppressing the carrier by taking advantages of the out-of-phase property between sidebands of a phase-modulated optical carrier is proposed for the first time. Theoretical analysis shows that the generated 60 GHz optical millimeter-wave (mm-wave) can tolerant ±0.016 nm wavelength drifting with filter bandwidth ranging from 70 to 100 GHz to sustain first to second harmonic suppression ratio of 18 dB. The doubled frequency is continuously tunable from 60 to 90 GHz within 100 GHz filter bandwidth with RF power variation of less than 2 dB. In addition, simultaneously generating and transmitting multi-band signal: millimeter-wave band, microwave band, and baseband leveraging the same concept is also proposed. Error-free transmission of 2.5 Gb/s wireless baseband signals carried by the generated 60 GHz mm-wave is successfully demonstrated in both single- and multi-band network environments over a combined optical fiber and wireless distance with a proper equivalent isotropically radiated power of about 20 dBm for in-building access. Moreover, dispersion effect on the generated frequency-doubled optical mm-wave is analyzed by experimentally comparing the link performance of both single mode fiber (SMF-28) and dispersion-shifted fiber cases. It is concluded that for single-band service delivery, the proposed scheme is immune to the interference from the dispersion-induced, redundant 1st harmonics; however, to deliver multi-band services, launching lightwave at zero-dispersion wavelength over SMF-28 is highly recommended to mitigate inter-band interference.

37 citations

Journal ArticleDOI
TL;DR: A new scheme to generate single-sideband (SSB) photonic vector millimeter-wave (mm-wave) signal adopting asymmetrical SSB modulation enabled by a single in-phase/quadrature (I/Q) modulator, which significantly simplifies the system architecture and increases system stability.
Abstract: We propose a new scheme to generate single-sideband (SSB) photonic vector millimeter-wave (mm-wave) signal adopting asymmetrical SSB modulation enabled by a single in-phase/quadrature (I/Q) modulator. The driving signal for the I/Q modulator is generated by software-based digital signal processing (DSP) instead of a complicated transmitter electrical circuit, which significantly simplifies the system architecture and increases system stability. One vector-modulated optical sideband and one unmodulated optical sideband, with different sideband frequencies, located at two sides of a significantly suppressed central optical carrier, are generated by the I/Q modulator and used for heterodyne beating to generate the electrical vector mm-wave signal. The two optical sidebands are robust to fiber dispersion and can be transmitted over relatively long-haul fiber. We experimentally demonstrate the generation and transmission of 4-Gbaud 80-GHz quadrature-phase-shift-keying-modulated (QPSK-modulated) SSB vector mm-wave signal over 240-km single-mode fiber-28 without optical dispersion compensation.

37 citations

Network Information
Related Topics (5)
Optical fiber
167K papers, 1.8M citations
89% related
Photonics
37.9K papers, 797.9K citations
88% related
Photonic crystal
43.4K papers, 887K citations
86% related
Amplifier
163.9K papers, 1.3M citations
83% related
Refractive index
51.5K papers, 774K citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202322
202237
202168
2020134
2019156
2018141