scispace - formally typeset
Search or ask a question
Topic

Optical coherence tomography

About: Optical coherence tomography is a research topic. Over the lifetime, 19051 publications have been published within this topic receiving 477433 citations. The topic is also known as: optical coherent tomography.


Papers
More filters
Journal ArticleDOI
TL;DR: A nondestructive optical method to assess tissue under in situ mechanical conditions with physiologic-range stress levels provides a framework for in vivo quantification of 3-D corneal elastic and viscoelastic resistance, including analogs of shear deformation and Poisson's ratio that may be relevant in the early diagnosis ofCorneal ectatic disease.
Abstract: The material properties of the cornea are important determinants of corneal shape and refractive power. Corneal ectatic diseases, such as keratoconus, are characterized by material property abnormalities, are associated with progressive thinning and distortion of the cornea, and represent a leading indication for corneal transplantation. We describe a corneal elastography technique based on optical coherence tomography (OCT) imaging, in which displacement of intracorneal optical features is tracked with a 2-D cross-correlation algorithm as a step toward nondestructive estimation of local and directional corneal material properties. Phantom experiments are performed to measure the effects of image noise and out-of-plane displacement on effectiveness of displacement tracking and demonstrated accuracy within the tolerance of a micromechanical translation stage. Tissue experiments demonstrate the ability to produce 2-D maps of heterogeneous intracorneal displacement with OCT. The ability of a nondestructive optical method to assess tissue under in situ mechanical conditions with physiologic-range stress levels provides a framework for in vivo quantification of 3-D corneal elastic and viscoelastic resistance, including analogs of shear deformation and Poisson's ratio that may be relevant in the early diagnosis of corneal ectatic disease.

140 citations

Journal ArticleDOI
TL;DR: An integration of dynamic light scattering (DLS) and optical coherence tomography (OCT) for high-resolution 3D imaging of heterogeneous diffusion and flow is introduced and a fitting algorithm is developed to estimate dynamic parameters including the axial and transverse velocities and the diffusion coefficient.
Abstract: We introduce an integration of dynamic light scattering (DLS) and optical coherence tomography (OCT) for high-resolution 3D imaging of heterogeneous diffusion and flow. DLS analyzes fluctuations in light scattered by particles to measure diffusion or flow of the particles, and OCT uses coherence gating to collect light only scattered from a small volume for high-resolution structural imaging. Therefore, the integration of DLS and OCT enables high-resolution 3D imaging of diffusion and flow. We derived a theory under the assumption that static and moving particles are mixed within the OCT resolution volume and the moving particles can exhibit either diffusive or translational motion. Based on this theory, we developed a fitting algorithm to estimate dynamic parameters including the axial and transverse velocities and the diffusion coefficient. We validated DLS-OCT measurements of diffusion and flow through numerical simulations and phantom experiments. As an example application, we performed DLS-OCT imaging of the living animal brain, resulting in 3D maps of the absolute and axial velocities, the diffusion coefficient, and the coefficient of determination.

140 citations

Patent
30 Apr 2002
TL;DR: In this article, a real-time dynamic optical feedback is used to detect the surface position of a tissue sample with respect to a reference point and the necessary delay scan range using a tilting/rotating mirror actuated by a voltage adjustable galvanometer.
Abstract: Methods for optical imaging, particularly with optical coherence tomography, using a low coherence light beam reflected from a sample surface and compared to a reference light beam, wherein real time dynamic optical feedback is used to detect the surface position of a tissue sample with respect to a reference point and the necessary delay scan range The delay is provided by a tilting/rotating mirror actuated by a voltage adjustable galvanometer An imaging probe apparatus for implementing the method is provided The probe initially scans along one line until it finds the tissue surface, identifiable as a sharp transition from no signal to a stronger signal The next time the probe scans the next line it adjusts the waveform depending on the previous scan An algorithm is disclosed for determining the optimal scan range

140 citations

Journal ArticleDOI
TL;DR: SS-OCT imaging technology can be used to non-invasively detect and quantify micrometer gaps at the bottom of composite restorations, and potentially become a monitoring tool for composite Restorations both in the laboratory research, and in the clinics.

140 citations

Posted Content
TL;DR: The feasibility of using FF-OCT in a real-time manner as a label-free non-invasive imaging technique in an intraoperative neurosurgical clinical setting to assess tumorous glial and epileptic margins is reported for the first time.
Abstract: A prospective study was performed on neurosurgical samples from 18 patients to evaluate the use of Full-Field Optical Coherence Tomography (FF-OCT) in brain tumor diagnosis. FF-OCT captures en face slices of tissue samples at 1\mum resolution in 3D with a typical 200\mum imaging depth. A 1cm2 specimen is scanned at a single depth and processed in about 5 minutes. This rapid imaging process is non-invasive and 30 requires neither contrast agent injection nor tissue preparation, which makes it particularly well suited to medical imaging applications. Temporal chronic epileptic parenchyma and brain tumors such as meningiomas, low- grade and high-grade gliomas, and choroid plexus papilloma were imaged. A subpopulation of neurons, myelin fibers and CNS vasculature were clearly identified. Cortex could be discriminated from white matter, but individual glial cells as astrocytes (normal or reactive) or oligodendrocytes were not observable. This study reports for the first time on the feasibility of using FF-OCT in a real-time manner as a label-free non-invasive imaging technique in an intra-operative neurosurgical clinical setting to assess tumorous glial and epileptic margins.

140 citations


Network Information
Related Topics (5)
Retinal
24.4K papers, 718.9K citations
85% related
Lens (optics)
156.4K papers, 1.2M citations
83% related
Glaucoma
31.5K papers, 738.2K citations
82% related
Visual acuity
32K papers, 797.1K citations
82% related
Retina
28K papers, 1.2M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,805
20223,557
2021907
20201,074
20191,127
20181,113