scispace - formally typeset
Search or ask a question
Topic

Optical coherence tomography

About: Optical coherence tomography is a research topic. Over the lifetime, 19051 publications have been published within this topic receiving 477433 citations. The topic is also known as: optical coherent tomography.


Papers
More filters
Patent
19 Jan 2006
TL;DR: In this article, a spectral-domain optical coherence tomography system using a cross-dispersed spectrometer is described, where the interfered optical signal is dispersed by a grating into several orders of diffraction, and these orders are separated by an additional dispersive optical element.
Abstract: A spectral-domain optical coherence tomography system using a cross-dispersed spectrometer is disclosed. The interfered optical signal is dispersed by a grating into several orders of diffraction, and these orders of diffraction are separated by an additional dispersive optical element. The spectral interferogram is recorded by a set of linear detector arrays, or by a two-dimensional detector array.

125 citations

Journal ArticleDOI
TL;DR: The Doppler bandwidth extracted from the standard deviation of the frequency shift in phase-resolved functional optical coherence tomography (F-OCT) was used to image the velocity component that is transverse to the optical probing beam and was found to be a linear function of flow velocity.
Abstract: The Doppler bandwidth extracted from the standard deviation of the frequency shift in phase-resolved functional optical coherence tomography (F-OCT) was used to image the velocity component that is transverse to the optical probing beam. It was found that above a certain threshold level the Doppler bandwidth is a linear function of flow velocity and that the effective numerical aperture of the optical objective in the sample arm determines the slope of this dependence. The Doppler bandwidth permits accurate measurement of flow velocity without the need for precise determination of flow direction when the Doppler flow angle is within +/-15 degrees perpendicular to the probing beam. Such an approach extends the dynamic range of flow velocity measurements obtained with the phase-resolved F-OCT.

125 citations

Journal ArticleDOI
TL;DR: This work investigates errors in imaging different tissue: cornea and retina in vivo and an intraocular lens in vitro, and shows that the axial distortion can be larger than the achievable depth resolution in modern OCT systems.
Abstract: Optical coherence tomography (OCT) images are affected by artefacts. These artefacts are the result of different factors such as refraction, curvature of the intermediate layers up to the depth of interest and the scanning procedure. The effect of such errors is different, depending on the way the image is acquired, either en-face or longitudinal OCT. We quantify the distortions by evaluating a lateral and an axial error. These measure the lateral and axial deviations of each image point from the object point inside the tissue. We show that the axial distortion can be larger than the achievable depth resolution in modern OCT systems. We have investigated these errors in imaging different tissue: cornea and retina in vivo and an intraocular lens in vitro.

125 citations

Journal ArticleDOI
TL;DR: The effects of a scanning sample arm fiber on the polarization state of light in an OCT system are investigated and it is demonstrated that by referencing the state backscattered from within a sample to the measured state at the surface, changes in polarization state can be isolated.
Abstract: Motion of the sample arm fiber in optical coherence tomography (OCT) systems can dynamically alter the polarization state of light incident on tissue during imaging, with consequences for both conventional and polarization-sensitive (PS-)OCT. Endoscopic OCT is particularly susceptible to polarization-related effects, since in most cases, the transverse scanning mechanism involves motion of the sample arm optical fiber to create an image. We investigated the effects of a scanning sample arm fiber on the polarization state of light in an OCT system, and demonstrate that by referencing the state backscattered from within a sample to the measured state at the surface, changes in polarization state due to sample fiber motion can be isolated. The technique is demonstrated by high-speed PS-OCT imaging at 1 frame per second, with both linear and rotary scanning fiber-optic probes. Measurements were made on a calibrated wave plate, and endoscopic PS-OCT images of ex-vivo human tissues are also presented, allowing comparison with features in histologic sections.

125 citations

Journal ArticleDOI
TL;DR: An overview of advanced image processing for three dimensional (3D) optical coherence tomographic (OCT) angiography of macular diseases, including age-related macular degeneration and diabetic retinopathy is provided.
Abstract: This article provides an overview of advanced image processing for three dimensional (3D) optical coherence tomographic (OCT) angiography of macular diseases, including age-related macular degeneration (AMD) and diabetic retinopathy (DR). A fast automated retinal layers segmentation algorithm using directional graph search was introduced to separates 3D flow data into different layers in the presence of pathologies. Intelligent manual correction methods are also systematically addressed which can be done rapidly on a single frame and then automatically propagated to full 3D volume with accuracy better than 1 pixel. Methods to visualize and analyze the abnormalities including retinal and choroidal neovascularization, retinal ischemia, and macular edema were presented to facilitate the clinical use of OCT angiography.

125 citations


Network Information
Related Topics (5)
Retinal
24.4K papers, 718.9K citations
85% related
Lens (optics)
156.4K papers, 1.2M citations
83% related
Glaucoma
31.5K papers, 738.2K citations
82% related
Visual acuity
32K papers, 797.1K citations
82% related
Retina
28K papers, 1.2M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,805
20223,557
2021907
20201,074
20191,127
20181,113