scispace - formally typeset
Search or ask a question
Topic

Optical coherence tomography

About: Optical coherence tomography is a research topic. Over the lifetime, 19051 publications have been published within this topic receiving 477433 citations. The topic is also known as: optical coherent tomography.


Papers
More filters
01 Mar 2014
TL;DR: In this paper, the authors compared optic disc perfusion between normal subjects and subjects with glaucoma using optical coherence tomography (OCT) angiography and to detect optic disc percutaneous changes.
Abstract: Purpose To compare optic disc perfusion between normal subjects and subjects with glaucoma using optical coherence tomography (OCT) angiography and to detect optic disc perfusion changes in glaucoma. Design Observational, cross-sectional study. Participants Twenty-four normal subjects and 11 patients with glaucoma were included. Methods One eye of each subject was scanned by a high-speed 1050-nm–wavelength swept-source OCT instrument. The split-spectrum amplitude-decorrelation angiography (SSADA) algorithm was used to compute 3-dimensional optic disc angiography. A disc flow index was computed from 4 registered scans. Confocal scanning laser ophthalmoscopy (cSLO) was used to measure disc rim area, and stereo photography was used to evaluate cup/disc (C/D) ratios. Wide-field OCT scans over the discs were used to measure retinal nerve fiber layer (NFL) thickness. Main Outcome Measures Variability was assessed by coefficient of variation (CV). Diagnostic accuracy was assessed by sensitivity and specificity. Comparisons between glaucoma and normal groups were analyzed by Wilcoxon rank-sum test. Correlations among disc flow index, structural assessments, and visual field (VF) parameters were assessed by linear regression. Results In normal discs, a dense microvascular network was visible on OCT angiography. This network was visibly attenuated in subjects with glaucoma. The intra-visit repeatability, inter-visit reproducibility, and normal population variability of the optic disc flow index were 1.2%, 4.2%, and 5.0% CV, respectively. The disc flow index was reduced by 25% in the glaucoma group ( P = 0.003). Sensitivity and specificity were both 100% using an optimized cutoff. The flow index was highly correlated with VF pattern standard deviation ( R 2 = 0.752, P = 0.001). These correlations were significant even after accounting for age, C/D area ratio, NFL, and rim area. Conclusions Optical coherence tomography angiography, generated by the new SSADA, repeatably measures optic disc perfusion and may be useful in the evaluation of glaucoma and glaucoma progression.

551 citations

Journal ArticleDOI
TL;DR: In this paper, the fundamentals of photoacoustics are first introduced and then, scanning photoacoustic microscopy and reconstruction-based photo-acoustic computed tomography (or photo acoustics computed tomograph) are covered.
Abstract: The field of photoacoustic tomography has experienced considerable growth in the past few years. Although several commercially available pure optical imaging modalities, including confocal microscopy, two-photon microscopy, and optical coherence tomography, have been highly successful, none of these technologies can provide penetration beyond ~1 mm into scattering biological tissues, because they are based on ballistic and quasi-ballistic photons. Heretofore, there has been a void in high-resolution optical imaging beyond this penetration limit. Photoacoustic tomography, which combines high ultrasonic resolution and strong optical contrast in a single modality, has broken through this limitation and filled this void. In this paper, the fundamentals of photoacoustics are first introduced. Then, scanning photoacoustic microscopy and reconstruction-based photoacoustic tomography (or photoacoustic computed tomography) are covered.

550 citations

Journal Article
TL;DR: In this paper, the authors investigated the ability of OCT to perform micron scale tomographic imaging of the internal microstructure of in vitro atherosclerotic plaques and found that OCT represents a promising new technology for imaging vascular micro-structure with a level of resolution not previously achieved with the use of other imaging modalities.
Abstract: Background Optical coherence tomography (OCT) is a recently developed medical diagnostic technology that uses back-reflected infrared light to perform in situ micron scale tomographic imaging. In this work, we investigate the ability of OCT to perform micron scale tomographic imaging of the internal microstructure of in vitro atherosclerotic plaques. Methods and Results Aorta and relevant nonvascular tissue were obtained at autopsy. Two-dimensional cross-sectional imaging of the exposed surface of the arterial segments was performed in vitro with OCT. A 1300-nm wavelength, superluminescent diode light source was used that allows an axial spatial resolution of 20 μm. The signal-to-noise ratio was 109 dB. Images were displayed in gray scale or false color. Imaging was performed over 1.5 mm into heavily calcified tissue, and a high contrast was noted between lipid- and water-based constituents. making OCT attractive for intracoronary imaging. The 20-μm axial resolution of OCT allowed small structural details such as the width of intimal caps and the presence of fissures to be determined. The extent of lipid collections, which had a low backscattering intensity, also were well documented. Conclusions OCT represents a promising new technology for imaging vascular microstructure with a level of resolution not previously achieved with the use of other imaging modalities. It does not require direct contact with the vessel wall and can be performed with a catheter integrated with a relatively inexpensive optical fiber. The high contrast among tissue constituents, high resolution, and ability to penetrate heavily calcified tissue make OCT an attractive new imaging technology for intracoronary diagnostics.

550 citations

Journal ArticleDOI
TL;DR: Ultrahigh-resolution ophthalmic OCT enables unprecedented visualization of intraretinal morphologic features and therefore has the potential to contribute to a better understanding of ocular pathogenesis, as well as to enhance the sensitivity and specificity for early ocular diagnosis and to monitor the efficacy of therapy.
Abstract: Objectives To demonstrate a new generation of ophthalmic optical coherence tomography(OCT) technology with unprecedented axial resolution for enhanced imaging of intraretinal microstructures and to investigate its clinical feasibility to visualize intraretinal morphology of macular pathology. Methods A clinically viable ultrahigh-resolution ophthalmic OCT system was developed and used in clinical imaging for the first time. Fifty-six eyes of 40 selected patients with different macular diseases including macular hole, macular edema, age-related macular degeneration, central serous chorioretinopathy, epiretinal membranes, and detachment of pigment epithelium and sensory retina were included. Outcome Measures Ultrahigh-resolution tomograms visualizing intraretinal morphologic features in different retinal diseases. Results An axial image resolution of approximately 3 µm was achieved in the eyes examined, nearly 2 orders of magnitude better than conventional ophthalmic ultrasound. Ultrahigh-resolution OCT images provided additional diagnostically important information on intraretinal morphologic features that could not have been obtained by standard techniques. Conclusions Ultrahigh-resolution ophthalmic OCT enables unprecedented visualization of intraretinal morphologic features and therefore has the potential to contribute to a better understanding of ocular pathogenesis, as well as to enhance the sensitivity and specificity for early ophthalmic diagnosis and to monitor the efficacy of therapy. This study establishes a baseline for the interpretation of ultrahigh-resolution ophthalmic OCT imaging of macular diseases.

549 citations

Journal ArticleDOI
TL;DR: The interfaced color Doppler Fourier domain optical coherence tomography (CD-FDOCT) with a commercial OCT system to perform in vivo studies of human retinal blood flow in real time and achieves a system sensitivity of 86dB using a beam power of 500microW at the cornea.
Abstract: We interfaced color Doppler Fourier domain optical coherence tomography (CD-FDOCT) with a commercial OCT system to perform in vivo studies of human retinal blood flow in real time. FDOCT does not need reference arm scanning and records one full depth and Doppler profile in parallel. The system operates with an equivalent A-scan rate of 25 kHz and allows real time imaging of the color encoded Doppler information together with the tissue morphology at a rate of 2-4 tomograms (40 x 512 pixel) per second. The recording time of a single tomogram (160 x 512 data points) is only 6,4ms. Despite the high detection speed we achieve a system sensitivity of 86dB using a beam power of 500microW at the cornea. The fundus camera allows simultaneous view for selection of the region of interest. We observe bi-directional blood flow and pulsatility of blood velocity in retinal vessels with a Doppler detection bandwidth of 12.5 kHz and a longitudinal velocity sensitivity in tissue of 200microm/s.

536 citations


Network Information
Related Topics (5)
Retinal
24.4K papers, 718.9K citations
85% related
Lens (optics)
156.4K papers, 1.2M citations
83% related
Glaucoma
31.5K papers, 738.2K citations
82% related
Visual acuity
32K papers, 797.1K citations
82% related
Retina
28K papers, 1.2M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,805
20223,557
2021907
20201,074
20191,127
20181,113