scispace - formally typeset
Search or ask a question

Showing papers on "Optical communication published in 2017"


Journal ArticleDOI
TL;DR: This survey provides the reader with comprehensive details on the use of space-based optical backhaul links in order to provide high capacity and low cost backhaul solutions.
Abstract: In recent years, free space optical (FSO) communication has gained significant importance owing to its unique features: large bandwidth, license free spectrum, high data rate, easy and quick deployability, less power, and low mass requirements. FSO communication uses optical carrier in the near infrared band to establish either terrestrial links within the Earth’s atmosphere or inter-satellite/deep space links or ground-to-satellite/satellite-to-ground links. It also finds its applications in remote sensing, radio astronomy, military, disaster recovery, last mile access, backhaul for wireless cellular networks, and many more. However, despite of great potential of FSO communication, its performance is limited by the adverse effects (viz., absorption, scattering, and turbulence) of the atmospheric channel. Out of these three effects, the atmospheric turbulence is a major challenge that may lead to serious degradation in the bit error rate performance of the system and make the communication link infeasible. This paper presents a comprehensive survey on various challenges faced by FSO communication system for ground-to-satellite/satellite-to-ground and inter-satellite links. It also provides details of various performance mitigation techniques in order to have high link availability and reliability. The first part of this paper will focus on various types of impairments that pose a serious challenge to the performance of optical communication system for ground-to-satellite/satellite-to-ground and inter-satellite links. The latter part of this paper will provide the reader with an exhaustive review of various techniques both at physical layer as well as at the other layers (link, network, or transport layer) to combat the adverse effects of the atmosphere. It also uniquely presents a recently developed technique using orbital angular momentum for utilizing the high capacity advantage of optical carrier in case of space-based and near-Earth optical communication links. This survey provides the reader with comprehensive details on the use of space-based optical backhaul links in order to provide high capacity and low cost backhaul solutions.

970 citations


Journal ArticleDOI
08 Jun 2017-Nature
TL;DR: This work exploits the scalability of microresonator-based DKS frequency comb sources for massively parallel optical communications at both the transmitter and the receiver, and demonstrates the potential of these sources to replace the arrays of continuous-wave lasers that are currently used in high-speed communications.
Abstract: Solitons are waveforms that preserve their shape while propagating, as a result of a balance of dispersion and nonlinearity. Soliton-based data transmission schemes were investigated in the 1980s and showed promise as a way of overcoming the limitations imposed by dispersion of optical fibres. However, these approaches were later abandoned in favour of wavelength-division multiplexing schemes, which are easier to implement and offer improved scalability to higher data rates. Here we show that solitons could make a comeback in optical communications, not as a competitor but as a key element of massively parallel wavelength-division multiplexing. Instead of encoding data on the soliton pulse train itself, we use continuous-wave tones of the associated frequency comb as carriers for communication. Dissipative Kerr solitons (DKSs) (solitons that rely on a double balance of parametric gain and cavity loss, as well as dispersion and nonlinearity) are generated as continuously circulating pulses in an integrated silicon nitride microresonator via four-photon interactions mediated by the Kerr nonlinearity, leading to low-noise, spectrally smooth, broadband optical frequency combs. We use two interleaved DKS frequency combs to transmit a data stream of more than 50 terabits per second on 179 individual optical carriers that span the entire telecommunication C and L bands (centred around infrared telecommunication wavelengths of 1.55 micrometres). We also demonstrate coherent detection of a wavelength-division multiplexing data stream by using a pair of DKS frequency combs-one as a multi-wavelength light source at the transmitter and the other as the corresponding local oscillator at the receiver. This approach exploits the scalability of microresonator-based DKS frequency comb sources for massively parallel optical communications at both the transmitter and the receiver. Our results demonstrate the potential of these sources to replace the arrays of continuous-wave lasers that are currently used in high-speed communications. In combination with advanced spatial multiplexing schemes and highly integrated silicon photonic circuits, DKS frequency combs could bring chip-scale petabit-per-second transceivers into reach.

922 citations


Journal ArticleDOI
TL;DR: This paper provides a comprehensive and exhaustive survey of the state-of-the-art UOWC research in three aspects: 1) channel characterization; 2) modulation; and 3) coding techniques, together with the practical implementations of UowC.
Abstract: Underwater wireless communications refer to data transmission in unguided water environment through wireless carriers, i.e., radio-frequency (RF) wave, acoustic wave, and optical wave. In comparison to RF and acoustic counterparts, underwater optical wireless communication (UOWC) can provide a much higher transmission bandwidth and much higher data rate. Therefore, we focus, in this paper, on the UOWC that employs optical wave as the transmission carrier. In recent years, many potential applications of UOWC systems have been proposed for environmental monitoring, offshore exploration, disaster precaution, and military operations. However, UOWC systems also suffer from severe absorption and scattering introduced by underwater channels. In order to overcome these technical barriers, several new system design approaches, which are different from the conventional terrestrial free-space optical communication, have been explored in recent years. We provide a comprehensive and exhaustive survey of the state-of-the-art UOWC research in three aspects: 1) channel characterization; 2) modulation; and 3) coding techniques, together with the practical implementations of UOWC.

790 citations


Journal ArticleDOI
TL;DR: In this article, the authors present a comprehensive survey on various challenges faced by free space optical communication (FSO) communication system for ground-to-satellite (G2S) or satellite-toground (S2G) and inter-Satellite (I2I) links.
Abstract: In recent years, free space optical communication has gained significant importance owing to its unique features: large bandwidth, license-free spectrum, high data rate, easy and quick deployability, less power and low mass requirements. FSO communication uses the optical carrier in the near infrared band to establish either terrestrial links within the Earth's atmosphere or inter-satellite or deep space links or ground-to-satellite or satellite-to-ground links. However, despite the great potential of FSO communication, its performance is limited by the adverse effects viz., absorption, scattering, and turbulence of the atmospheric channel. This paper presents a comprehensive survey on various challenges faced by FSO communication system for ground-to-satellite or satellite-to-ground and inter-satellite links. It also provides details of various performance mitigation techniques in order to have high link availability and reliability. The first part of the paper will focus on various types of impairments that pose a serious challenge to the performance of optical communication system for ground-to-satellite or satellite-to-ground and inter-satellite links. The latter part of the paper will provide the reader with an exhaustive review of various techniques both at physical layer as well as at the other layers i.e., link, network or transport layer to combat the adverse effects of the atmosphere. It also uniquely presents a recently developed technique using orbital angular momentum for utilizing the high capacity advantage of the optical carrier in case of space-based and near-Earth optical communication links. This survey provides the reader with comprehensive details on the use of space-based optical backhaul links in order to provide high-capacity and low-cost backhaul solutions.

479 citations


Journal ArticleDOI
TL;DR: In this paper, an orthogonal frequency division multiplexing-based VLC system with adaptive bit and energy loading is demonstrated, and a data transmission rate of 11.95 GB/s is achieved with a violet micro-LED.
Abstract: Visible light communication (VLC) is a promising solution to the increasing demands for wireless connectivity. Gallium nitride micro-sized light emitting diodes (micro-LEDs) are strong candidates for VLC due to their high bandwidths. Segmented violet micro-LEDs are reported in this work with electrical-to-optical bandwidths up to 655 MHz. An orthogonal frequency division multiplexing-based VLC system with adaptive bit and energy loading is demonstrated, and a data transmission rate of 11.95 Gb/s is achieved with a violet micro-LED, when the nonlinear distortion of the micro-LED is the dominant noise source of the VLC system. A record 7.91 Gb/s data transmission rate is reported below the forward error correction threshold using a single pixel of the segmented array when all the noise sources of the VLC system are present.

274 citations


Journal ArticleDOI
TL;DR: This work shows that it can automatically unscramble optical beams that have been arbitrarily mixed in a multimode waveguide, undoing the scattering and mixing between the spatial modes through a mesh of silicon photonics tuneable beam splitters.
Abstract: Propagation of light beams through scattering or multimode systems may lead to the randomization of the spatial coherence of the light. Although information is not lost, its recovery requires a coherent interferometric reconstruction of the original signals, which have been scrambled into the modes of the scattering system. Here we show that we can automatically unscramble optical beams that have been arbitrarily mixed in a multimode waveguide, undoing the scattering and mixing between the spatial modes through a mesh of silicon photonics tuneable beam splitters. Transparent light detectors integrated in a photonic chip are used to directly monitor the evolution of each mode along the mesh, allowing sequential tuning and adaptive individual feedback control of each beam splitter. The entire mesh self-configures automatically through a progressive tuning algorithm and resets itself after significantly perturbing the mixing, without turning off the beams. We demonstrate information recovery by the simultaneous unscrambling, sorting and tracking of four mixed modes, with residual cross-talk of −20 dB between the beams. Circuit partitioning assisted by transparent detectors enables scalability to meshes with a higher port count and to a higher number of modes without a proportionate increase in the control complexity. The principle of self-configuring and self-resetting in optical systems should be applicable in a wide range of optical applications. A silicon photonics chip featuring a mesh of tunable beam splitters can unscramble mode mixing that occurs in multimode waveguides. Scattering or multimode systems can randomize the spatial coherence of light beams. Francesco Morichetti and co-workers from Politecnico di Milano, Italy, and Stanford University, USA, have fabricated a chip-based descrambler that can automatically unscramble optical beams. A progressive tuning algorithm that monitors the output of the chip enables the mesh to self-configure so that it can unscramble and sort different spatial modes. In a demonstration of the device, four optical beams containing mixed modes were unmixed and separated into outputs with a residual crosstalk of less than −20 dB between the modes. The approach is scalable to a higher number of modes and is promising for optical communication systems employing mode division multiplexing.

157 citations


Journal ArticleDOI
TL;DR: How predictions were made from the outset of research in laser based optical communications and how they have evolved to their present form, accurately predicting the performance of coherently detected communication systems are described.
Abstract: In this paper, we review the historical evolution of predictions of the performance of optical communication systems. We will describe how such predictions were made from the outset of research in laser based optical communications and how they have evolved to their present form, accurately predicting the performance of coherently detected communication systems.

149 citations


Journal ArticleDOI
TL;DR: In this paper, a prototype device for all-optical thresholding and optical modulation using few-layer phosphorene-decorated microfibers is presented, which can enhance the signal-to-noise ratio and reshape the deteriorated signal pulse.
Abstract: Phosphorene, mono/few-layered black phosphorous with advantages of tunable energy bandgaps and strong light–matter interaction, is fabricated by electrochemical intercalation with large area (≈3 µm) and controllable thickness (mainly four layers). Thanks to the direct gap and resonant absorption of four-layer phosphorene at the telecommunication band, all-optical thresholding and optical modulation are demonstrated for optical communications by using few-layer phosphorene-decorated microfibers. This device is experimentally verified as an efficient noise suppressor that can enhance the signal-to-noise ratio and reshape the deteriorated signal pulse, and also as an optical modulator that can switch the signal on/off by pumping light. The findings, as the first prototypic device of all-optical thresholding and optical modulation, might facilitate the development of phosphorene-based optical communication technologies.

131 citations


Journal ArticleDOI
20 May 2017
TL;DR: In this article, a wide range continuously tunable optical delay line chip consisting of a ring resonator array and a Mach-Zehnder interferometer (MZI) switch array on the 60-nm-thick silicon waveguide platform is presented.
Abstract: As light cannot be stopped or directly stored in any media, optical delay lines are usually used to temporally trap the optical signals. We report a wide-range continuously tunable optical delay line chip consisting of a ring resonator array and a Mach–Zehnder interferometer (MZI) switch array on the 60-nm-thick silicon waveguide platform. The ring delay line provides continuous delay tuning of more than 10 ps with a push–pull differential tuning method. The MZI switchable delay line provides digitally programmable delay tuning with a resolution of 10 ps upon reconfiguration of the MZI switches to establish different optical routing paths. Dual-stage MZI switches are used to ensure low crosstalk with an improved signal-to-noise ratio. The delay line chip can generate a maximum delay of >1 ns with an on-chip insertion loss of 12.4 dB. Optical pulse time-division multiplexing and quasi-arbitrary waveform generation are realized based on the delay line chip. These results represent a significant step towards the realization of highly reconfigurable optical signal processors enabled by optical delay manipulation with broad applications for optical communications and microwave photonics.

117 citations


Journal ArticleDOI
Mengxin Ren1, Wei Wu1, Wei Cai1, Pi Biao1, Xinzheng Zhang1, Jingjun Xu1 
TL;DR: This work presents a novel optically reconfigurable hybrid metasurface that enables polarization tuning at optical frequencies and achieves more than 20° nonlinear changes in the transmitted polarization azimuth using just 4 mW of switching light power.
Abstract: Plasmonic metasurfaces have recently attracted much attention because of their novel characteristics with respect to light polarization and wave front control on deep-subwavelength scales. The development of metasurfaces with reconfigurable optical responses is opening new opportunities in high-capacity communications, real-time holograms and adaptive optics. Such tunable devices have been developed in the mid-infrared spectral range and operated in light intensity modulation schemes. Here we present a novel optically reconfigurable hybrid metasurface that enables polarization tuning at optical frequencies. The functionality of tuning is realized by switching the coupling conditions between the plasmonic modes and the binary isomeric states of an ethyl red switching layer upon light stimulation. We achieved more than 20° nonlinear changes in the transmitted polarization azimuth using just 4 mW of switching light power. Such design schemes and principles could be easily applied to dynamically adjust the functionalities of other metasurfaces. A metasurface whose properties can be optically controlled has been used to vary the polarization of a light beam by over 20 degrees. Metasurfaces — the two-dimensional equivalents of metamaterials—consist of ultrathin arrays of miniature light scatters. The optical properties of most metasurfaces are fixed, but there has been a recent push to produce tunable metasurfaces. Now, by combining a metasurface with a dye that switches between two different structures on light excitation, a team at Nankai University in China has realized a metasurface that can alter the polarization of a light beam in response to a continuous laser beam of just a few milliwatts. The metasurface is promising for optical communications and computing as well as optical display devices, and the principle could potentially be extended to other functionalities.

103 citations


Journal ArticleDOI
Caihong Kai1, Pei Huang1, Fei Shen1, Hongping Zhou1, Zhongyi Guo1 
TL;DR: In this paper, a phase hologram was designed and implemented at the transmitter and the receiver for multiplexing and de-multiplexing the orbital angular momentum (OAM) states, respectively.
Abstract: In the free space optical communication, the information can be encoded as the orbital angular momentum (OAM) state of light, which is called OAM shift keying (OAM-SK). This paper has proposed a communication system with OAM-SK, in which an image has been delivered from the transmitter to the receiver successfully in the simulation environment. Specifically, we have carefully designed and implemented the phase holograms used at the transmitter and the receiver for multiplexing and de-multiplexing the OAM states, respectively. At the transmitter, the multiplexing phase hologram designed by the modified Lin's algorithm is loaded on the spatial light modulator 1 (SLM1) to generate the multiplexing vortex beam, which is a superposition of multiple vortex beams with different OAM states. Correspondingly, at the receiver, a novel phase hologram is designed and loaded on the SLM2 to effectively de-multiplex the multiplexing vortex beam in different directions. In our phase hologram used at the receiver, the detected power of each OAM state can be controlled by adjusting the weight coefficient by the modified Lin's algorithm. This way, the incident power can be concentrated to the target OAM states, from which the target OAM states can be detected more effectively than conventional fork grating.

Journal ArticleDOI
TL;DR: With a genetic algorithm, an on-chip TEo- TMo polarization rotator with a footprint of 0.96 μm × 4.2 μm is designed and experimentally demonstrated its conversion loss and extinction ratio in the wavelength range of 1440–1580nm.
Abstract: Polarization control of light waves is an important technique in optical communication and signal processing. On-chip polarization rotation from the fundamental transverse-electric (TE00) mode to the fundamental transverse-magnetic (TM00) mode is usually difficult because of their large effective refractive index difference. Here, we demonstrate an on-chip wideband polarization rotator designed with a genetic algorithm to convert the TE00 mode into the TM00 mode within a footprint of 0.96 μm ×4.2 μm. In simulation, the optimized structure achieves polarization rotation with a minimum conversion loss of 0.7 dB and the 1-dB bandwidth of 157 nm. Experimentally, our fabricated devices have demonstrated the expected polarization rotation with a conversion loss of ∼2.5 dB in the measured wavelength range of 1440–1580 nm, where the smallest value reaches ∼2 dB. The devices can serve as a generic approach and standard module for controlling light polarization in integrated photonic circuitry.

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate the feasibility of QKD and classical communication to share the resources of backbone fiber links and thus take the utility of quantum key distribution a great step forward.
Abstract: Quantum key distribution (QKD) generates symmetric keys between two remote parties and guarantees the keys are not accessible to any third party. Wavelength-division multiplexing between QKD and classical optical communications by sharing the existing fiber-optics infrastructure is highly desired in order to reduce the cost of QKD applications. However, comparing to the light for classical transmission, quantum signals are very weak and easily affected by impairments from classical light, such as the spontaneous Raman-scattering effect. Here, by selecting an optimal wavelength of quantum signals, we significantly reduce the influence of the Raman-scattering effect. In addition, through coherent optical communication technology, we achieve high-speed classical data transmission with relatively low launch powers, thereby further reducing the impairments from classical light. As a result, we realize the multiplexing and long-distance copropagation of QKD and terabit classical data transmission up to 80 km. The data capacity is two orders of magnitude larger than the existing results. Our demonstration verifies the feasibility of QKD and classical communication to share the resources of backbone fiber links and thus taking the utility of QKD a great step forward.

Journal ArticleDOI
TL;DR: This work reviews recent research progress in complex optical field modulation, multiplexing, and multicasting for data information transfer on different platforms of waveguides, free space, and fiber.
Abstract: Tailored complex optical fields, may find applications in optical manipulation, imaging, microscopy, quantum information processing, and optical communications. Here, we focus on data information transfer for optical communications using complex optical fields. We review recent research progress in complex optical field modulation, multiplexing, and multicasting for data information transfer on different platforms of waveguides, free space, and fiber. Challenges and perspectives are also discussed.

Journal ArticleDOI
TL;DR: A survey on fiber nonlinearity compensation (NLC) techniques is provided and focuses on the well-known NLC techniques and discusses their performance, as well as their implementation and complexity.
Abstract: Optical communication systems represent the backbone of modern communication networks. Since their deployment, different fiber technologies have been used to deal with optical fiber impairments such as dispersion-shifted fibers and dispersion-compensation fibers. In recent years, thanks to the introduction of coherent detection based systems, fiber impairments can be mitigated using digital signal processing (DSP) algorithms. Coherent systems are used in the current 100 Gb/s wavelength-division multiplexing (WDM) standard technology. They allow the increase of spectral efficiency by using multilevel modulation formats, and are combined with DSP techniques to combat linear fiber distortions. In addition to linear impairments, the next generation 400 Gb/s and 1 Tb/s WDM systems are also more affected by the fiber nonlinearity due to the Kerr effect. At high input powers, fiber nonlinear effects become more important and their compensation is required to improve the transmission performance. Several approaches have been proposed to deal with the fiber nonlinearity. In this paper, after a brief description of the Kerr-induced nonlinear effects, a survey on fiber nonlinearity compensation (NLC) techniques is provided. We focus on the well-known NLC techniques and discuss their performance, as well as their implementation and complexity. An extension of the inter-subcarrier nonlinear interference canceler approach is also proposed. A performance evaluation of the well-known NLC techniques and the proposed approach is provided in the context of Nyquist and super-Nyquist superchannel systems.

Journal ArticleDOI
TL;DR: The proposed k-means-clustering-based fiber non linearity mitigation techniques can greatly mitigate the signal impairments caused by the amplified spontaneous emission noise and the fiber Kerr nonlinearity and improve the BER performance.
Abstract: In this work, we proposed two k-means-clustering-based algorithms to mitigate the fiber nonlinearity for 64-quadrature amplitude modulation (64-QAM) signal, the training-sequence assisted k-means algorithm and the blind k-means algorithm. We experimentally demonstrated the proposed k-means-clustering-based fiber nonlinearity mitigation techniques in 75-Gb/s 64-QAM coherent optical communication system. The proposed algorithms have reduced clustering complexity and low data redundancy and they are able to quickly find appropriate initial centroids and select correctly the centroids of the clusters to obtain the global optimal solutions for large k value. We measured the bit-error-ratio (BER) performance of 64-QAM signal with different launched powers into the 50-km single mode fiber and the proposed techniques can greatly mitigate the signal impairments caused by the amplified spontaneous emission noise and the fiber Kerr nonlinearity and improve the BER performance.

Journal ArticleDOI
TL;DR: It is demonstrated that appropriate structuration of the input beam wavefront can shape the light amplified by a rare-earth-doped multimode fiber amplifier and that the shaping is effective even with a highly multimode Fiber amplifier carrying up to 127 modes.
Abstract: Propagation of light in multimode optical fibers usually gives a spatial and temporal randomization of the transmitted field similar to the propagation through scattering media. Randomization still applies when scattering or multimode propagation occurs in gain media. We demonstrate that appropriate structuration of the input beam wavefront can shape the light amplified by a rare-earth-doped multimode fiber. Profiling of the wavefront was achieved by a deformable mirror in combination with an iterative optimization process. We present experimental results and simulations showing the shaping of a single sharp spot at different places in the output cross-section of an ytterbium-doped fiber amplifier. Cleaning and narrowing of the amplifier far-field pattern was realized as well. Tailoring the wavefront to shape the amplified light can also serve to improve the effective gain. The shaping approach still works under gain saturation, showing the robustness of the method. Modeling and experiments attest that the shaping is effective even with a highly multimode fiber amplifier carrying up to 127 modes.

Journal ArticleDOI
Zhiyu Chen1, Lianshan Yan1, Yan Pan1, Lin Jiang1, Anlin Yi1, Wei Pan1, Bin Luo1 
TL;DR: This work proposes and experimentally demonstrates a scheme for pseudo-PDM of four states (PPDM-4) by manipulation of four linearly polarized data channels with the same wavelength, which is expected to open new possibilities to fully explore the use of polarization freedom for capacity and SE improvement over existing fiber systems.
Abstract: Increasing the system capacity and spectral efficiency (SE) per unit bandwidth is one of the ultimate goals for data network designers, especially when using technologies compatible with current embedded fiber infrastructures. Among these, the polarization-division-multiplexing (PDM) scheme, which supports two independent data channels on a single wavelength with orthogonal polarization states, has become a standard one in most state-of-art telecommunication systems. Currently, however, only two polarization states (that is, PDM) can be used, setting a barrier for further SE improvement. Assisted by coherent detection and digital signal processing, we propose and experimentally demonstrate a scheme for pseudo-PDM of four states (PPDM-4) by manipulation of four linearly polarized data channels with the same wavelength. Without any modification of the fiber link, we successfully transmit a 100-Gb s−1 PPDM-4 differential-phase-shift-keying signal over a 150-km single-mode fiber link. Such a method is expected to open new possibilities to fully explore the use of polarization freedom for capacity and SE improvement over existing fiber systems. A scheme for manipulating four linearly polarized data channels down existing fibre optic cables has been developed by researchers in China. Polarization-division multiplexing uses the polarization of light waves to differentiate multiple data streams travelling through a single-mode fibre. Lian-Shan Yan and co-workers from Southwest Jiaotong University have now found a way to accommodate more polarization states at a single wavelength, boosting the potential capacity of data networks. The team implemented a setup that multiplexes four signals having separate 0°, 30°, 90° and 120° polarizations using an optical controller. After transmission, the received signal is analyzed by coherent detectors aligned to the original polarization states, and demultiplexing algorithms. This strategy enabled data to be transferred at 100 Gb s-1 through a 150-km single-mode fibre.

Proceedings ArticleDOI
20 Nov 2017
TL;DR: TESAT has developed a laser communication terminal (LCT) that fulfills the need of a power efficient system whose capability has been successfully demonstrated at bidirectional space-to-space links and bidirectionals space- to-ground links (SGLs) at a data rate of 5.625 GBit/s with a homodyne detection scheme and a BPSK modulation format.
Abstract: The increasing demand on high speed communication networks has stimulated the development of optical free space data transmission during the last years. TESAT has developed a laser communication terminal (LCT) that fulfills the need of a power efficient system whose capability has been successfully demonstrated at bidirectional space-to-space links and bidirectional space-to-ground links (SGLs) at a data rate of 5.625 GBit/s with a homodyne detection scheme and a BPSK modulation format. In comparison to a direct detection system, the homodyne detection scheme works as a bandpass filter. The transmission is immune to false light and even data transmission with the sun in the receiver field of view (FOV) is possible. Compared to common RF transmission which is implemented on spacecrafts for data transmission, optical transmission provides not only higher transmission rates (factor 10) but also shows excellent security features since the laser beams directivity making it immune to interception.

Journal ArticleDOI
TL;DR: The design route utilizing synthetic photonic lattices may significantly reduce the requirement for numerous optical elements and their fine tuning in conventional design, paving the way for realistic all-optical photonic devices with novel functionalities.
Abstract: All-optical photonic devices are crucial for many important photonic technologies and applications, ranging from optical communication to quantum information processing. Conventional design of all-optical devices is based on photon propagation and interference in real space, which may rely on large numbers of optical elements, and the requirement of precise control makes this approach challenging. Here we propose an unconventional route for engineering all-optical devices using the photon's internal degrees of freedom, which form photonic crystals in such synthetic dimensions for photon propagation and interference. We demonstrate this design concept by showing how important optical devices such as quantum memory and optical filters can be realized using synthetic orbital angular momentum (OAM) lattices in degenerate cavities. The design route utilizing synthetic photonic lattices may significantly reduce the requirement for numerous optical elements and their fine tuning in conventional design, paving the way for realistic all-optical photonic devices with novel functionalities.

Journal ArticleDOI
20 Jun 2017
TL;DR: In this paper, a new approach is used to fabricate miniature vortex mode sorters based on three-dimensional laser printing, which can handle both pure and mixed vortex beams with topological charge |l|≤3 and |l |≤2 for the dual-element device and integrated system, respectively.
Abstract: Optical vortex beams can be used as carriers of information in optical communication and quantum optics applications. Owing to their spatial orthogonality, these beams can be multiplexed and demultiplexed, but up until now this was primarily achieved by bulky and large devices. In this work, a new approach is used to fabricate miniature vortex mode sorters based on three-dimensional laser printing, thereby enabling direct integration into optical systems. Mode sorters that are composed of two separate elements as well as a single integrated device are presented. These devices can handle both pure and mixed vortex beams with topological charge |l|≤3 and |l|≤2 for the dual-element device and integrated system, respectively. Mode-sorter spectral bandwidth and surface-quality effects are also discussed.

Journal ArticleDOI
TL;DR: This manuscript reports on ultrafast graphene photodetectors with a bandwidth of more than 76 GHz well suitable for communication links faster than 100 GBit s−1 per channel and extracts an upper value of 7.2 ps for the timescale in which the bolometric photoresponse in graphene is generated.
Abstract: In recent years, the data traffic has grown exponentially and the forecasts indicate a huge market that could be addressed by communication infrastructure and service providers. However, the processing capacity, space, and energy consumption of the available technology is a serious bottleneck for the exploitation of these markets. Chip-integrated optical communication systems hold the promise of significantly improving these issues related to the current technology. At the moment, the answer to the question which material is best suited for ultrafast chip integrated communication systems is still open. In this manuscript we report on ultrafast graphene photodetectors with a bandwidth of more than 76 GHz well suitable for communication links faster than 100 GBit s−1 per channel. We extract an upper value of 7.2 ps for the timescale in which the bolometric photoresponse in graphene is generated. The photodetectors were fabricated on 6'' silicon-on-insulator wafers in a semiconductor pilot line, demonstrating the scalable fabrication of high-performance graphene based devices.

Journal ArticleDOI
TL;DR: A unified mathematical framework is developed to investigate the performance in transmission and reception of metallic nano-dipole antennas and will guide the design and development of novel nano-antennas suited for wireless optical communication.
Abstract: In this paper, metallic plasmonic nano-antennas are modeled and analyzed for wireless optical communication. More specifically, a unified mathematical framework is developed to investigate the performance in transmission and reception of metallic nano-dipole antennas. This framework takes into account the metal properties, i.e., its dynamic complex conductivity and permittivity; the propagation properties of surface plasmon polariton waves on the nano-antenna, i.e., their confinement factor and propagation length; and the antenna geometry, i.e., length and radius. The generated plasmonic current in reception and the total radiated power and efficiency in transmission are analytically derived by utilizing the framework. In addition to numerical results, the analytical models are validated by means of simulations with COMSOL Multi-physics. The developed framework will guide the design and development of novel nano-antennas suited for wireless optical communication.

Journal ArticleDOI
TL;DR: In this article, the achievable information rates of a wideband optical communication system using a ∼40"nm"n"d" erbium-doped fiber amplifier and ∼100"nm") distributed Raman amplification are estimated based on a first-order perturbation analysis.
Abstract: Achievable information rates (AIRs) of wideband optical communication systems using a ∼40 nm (∼5 THz) erbium-doped fiber amplifier and ∼100 nm (∼12.5 THz) distributed Raman amplification are estimated based on a first-order perturbation analysis. The AIRs of each individual channel have been evaluated for DP-64QAM, DP-256QAM, and DP-1024QAM modulation formats. The impact of full-field nonlinear compensation (FF-NLC) and probabilistically shaped constellations using a Maxwell–Boltzmann distribution were studied and compared to electronic dispersion compensation. It has been found that a probabilistically shaped DP-1024QAM constellation, combined with FF-NLC, yields achievable information rates of ∼75 Tbit/s for the EDFA scheme and ∼223 Tbit/s for the Raman amplification scheme over a 2000 km standard single-mode fiber transmission.

Journal ArticleDOI
TL;DR: In this paper, a pixelated VLC backscatter is proposed and implemented to overcome the channel capacity limitation, which enables the usage of advanced modulation schemes such as ON-OFF keying (OOK).
Abstract: Visible light communication (VLC) backscatter has been proposed as a wireless access option for Internet of Things. However, the throughput of the state-of-the-art VLC backscatter is limited by simple single-carrier pulsed modulation scheme, such as ON-OFF keying (OOK). In this letter, a novel pixelated VLC backscatter is proposed and implemented to overcome the channel capacity limitation. In particular, multiple smaller VLC backscatters are integrated to generate multi-level signals, which enables the usage of advanced modulation schemes. Based on experimental results, rate adaptation at different communication distances can be employed to enhance the achievable data rate. Compared with OOK, the data rate can be tripled, when 8-pulse amplitude modulation is used at 2 m. In general, $n$ -fold throughput enhancement is realized by utilizing $n$ smaller VLC backscatters, while incurring negligible additional energy using the same device space as that of a single large backscatter.

Journal ArticleDOI
TL;DR: In this article, a survey on the fiber nonlinearity compensation (NLC) techniques is provided and an extension of the inter-subcarrier nonlinear interference canceler approach is also proposed.
Abstract: Optical communication systems represent the backbone of modern communication networks. Since their deployment, different fiber technologies have been used to deal with optical fiber impairments such as dispersion-shifted fibers and dispersion-compensation fibers. In recent years, thanks to the introduction of coherent detection based systems, fiber impairments can be mitigated using digital signal processing (DSP) algorithms. Coherent systems are used in the current 100 Gbps wavelength-division multiplexing (WDM) standard technology. They allow the increase of spectral efficiency by using multi-level modulation formats, and are combined with DSP techniques to combat the linear fiber distortions. In addition to linear impairments, the next generation 400 Gbps/1 Tbps WDM systems are also more affected by the fiber nonlinearity due to the Kerr effect. At high input power, the fiber nonlinear effects become more important and their compensation is required to improve the transmission performance. Several approaches have been proposed to deal with the fiber nonlinearity. In this paper, after a brief description of the Kerr-induced nonlinear effects, a survey on the fiber nonlinearity compensation (NLC) techniques is provided. We focus on the well-known NLC techniques and discuss their performance, as well as their implementation and complexity. An extension of the inter-subcarrier nonlinear interference canceler approach is also proposed. A performance evaluation of the well-known NLC techniques and the proposed approach is provided in the context of Nyquist and super-Nyquist superchannel systems.

Journal ArticleDOI
TL;DR: High-quality real-time video streaming over an underwater wireless optical communication (UWOC) link up to 5 m distance is experimentally demonstrated using phase-shift keying (PSK) modulation and quadrature amplitude modulation (QAM) schemes.
Abstract: We experimentally demonstrate high-quality real-time video streaming over an underwater wireless optical communication (UWOC) link up to 5 m distance using phase-shift keying (PSK) modulation and quadrature amplitude modulation (QAM) schemes. The communication system uses software defined platforms connected to a commercial TO-9 packaged pigtailed 520 nm directly modulated laser diode (LD) with 1.2 GHz bandwidth as the optical transmitter and an avalanche photodiode (APD) module as the receiver. To simulate various underwater channels, we perform laboratory experiments on clear, coastal, harbor I, and harbor II ocean water types. The measured bit error rates of the received video streams are 1.0 × 10-9 for QPSK, 4-QAM, and 8-QAM and 9.9 × 10-9 for 8-PSK. We further evaluate the quality of the received live video images using structural similarity and achieve values of about 0.9 for the first three water types, and about 0.7 for harbor II. To the best of our knowledge, these results present the highest quality video streaming ever achieved in UWOC systems that resemble communication channels in real ocean water environments.

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate high-speed nonpolar InGaN/GaN LEDs with a peak emission wavelength between 455 and 465 nm on free-standing non-polar GaN substrates.
Abstract: Free-standing nonpolar GaN substrates provide an excellent platform for the fabrication of high-speed blue and green light-emitting diodes (LEDs), which are attractive for visible-light communication, plastic optical fiber communication, and short-range under water optical communication. Nonpolar LEDs on free-standing GaN exhibit a large electron-hole wave function overlap, low extended defect density, and favorable thermal properties. Here, we demonstrate high-speed nonpolar InGaN/GaN LEDs with a peak emission wavelength between 455 and 465 nm on free-standing nonpolar GaN substrates. A large frequency modulation bandwidth of 524 MHz is demonstrated at a current density of 10 kA/cm 2 .

Journal ArticleDOI
TL;DR: The demonstrated high data-rate OFDM-based UVB communication link paves the way for realizing high-speed non-line-of-sight free-space optical communications.
Abstract: A demonstration of ultraviolet-B (UVB) communication link is implemented utilizing quadrature amplitude modulation (QAM) orthogonal frequency-division multiplexing (OFDM). The demonstration is based on a 294-nm UVB-light-emitting-diode (UVB-LED) with a full-width at half-maximum (FWHM) of 9 nm and light output power of 190 μW, at 7 V, with a special silica gel lens on top of it. A −3-dB bandwidth of 29 MHz was measured and a high-speed near-solar-blind communication link with a data rate of 71 Mbit/s was achieved using 8-QAM-OFDM at perfect alignment. 23.6 Mbit/s using 2-QAM-OFDM when the angle subtended by the pointing directions of the UVB-LED and photodetector (PD) is 12 degrees, thus establishing a diffuse-line-of-sight (LOS) link. The measured bit-error rate (BER) of 2.8 ×10−4 and 2.4 ×10−4, respectively, are well below the forward error correction (FEC) criterion of 3.8 ×10−3. The demonstrated high data-rate OFDM-based UVB communication link paves the way for realizing high-speed non-line-of-sight free-space optical communications.

Journal ArticleDOI
TL;DR: This work investigates the underwater wireless optical communications using different spatial modes, i.e., traditional Gaussian modes, orbital angular momentum modes having helical phase fronts, and diffraction-free and obstruction-tolerant Bessel modes, and evaluates the underwater transmission performance of three spatial modes subjected to dynamic bubbles.
Abstract: Spatial modes have attracted increasing interest in free-space and fiber-based optical communications. Underwater wireless optical communication is becoming a promising technique in marine exploration. Here we investigate the underwater wireless optical communications using different spatial modes, i.e., traditional Gaussian modes, orbital angular momentum modes having helical phase fronts, and diffraction-free and obstruction-tolerant Bessel modes. We evaluate the underwater transmission performance of three spatial modes subjected to dynamic bubbles, which cause similar power fluctuations, regardless of spatial modes. We also demonstrate an underwater transmission link subjected to static obstructions using three spatial modes carrying 1.4 Gbaud orthogonal frequency division multiplexing 16-ary quadrature amplitude modulation (16-QAM) signals. The Bessel mode shows the best performance against obstructions.