Topic
Optical engineering
About: Optical engineering is a research topic. Over the lifetime, 11622 publications have been published within this topic receiving 113976 citations.
Papers published on a yearly basis
Papers
More filters
Book•
[...]
TL;DR: The field of nonlinear fiber optics has advanced enough that a whole book was devoted to it as discussed by the authors, which has been translated into Chinese, Japanese, and Russian languages, attesting to the worldwide activity in the field.
Abstract: Nonlinear fiber optics concerns with the nonlinear optical phenomena occurring inside optical fibers. Although the field ofnonlinear optics traces its beginning to 1961, when a ruby laser was first used to generate the second-harmonic radiation inside a crystal [1], the use ofoptical fibers as a nonlinear medium became feasible only after 1970 when fiber losses were reduced to below 20 dB/km [2]. Stimulated Raman and Brillouin scatterings in single-mode fibers were studied as early as 1972 [3] and were soon followed by the study of other nonlinear effects such as self- and crossphase modulation and four-wave mixing [4]. By 1989, the field ofnonlinear fiber optics has advanced enough that a whole book was devoted to it [5]. This book or its second edition has been translated into Chinese, Japanese, and Russian languages, attesting to the worldwide activity in the field of nonlinear fiber optics.
15,319 citations
[...]
TL;DR: The techniques that have, and will, be used to implement silicon optical modulators, as well as the outlook for these devices, and the candidate solutions of the future are discussed.
Abstract: Optical technology is poised to revolutionize short-reach interconnects. The leading candidate technology is silicon photonics, and the workhorse of such an interconnect is the optical modulator. Modulators have been improved dramatically in recent years, with a notable increase in bandwidth from the megahertz to the multigigahertz regime in just over half a decade. However, the demands of optical interconnects are significant, and many questions remain unanswered as to whether silicon can meet the required performance metrics. Minimizing metrics such as the device footprint and energy requirement per bit, while also maximizing bandwidth and modulation depth, is non-trivial. All of this must be achieved within an acceptable thermal tolerance and optical spectral width using CMOS-compatible fabrication processes. This Review discusses the techniques that have been (and will continue to be) used to implement silicon optical modulators, as well as providing an outlook for these devices and the candidate solutions of the future.
1,894 citations
Book Chapter•
[...]
01 Jan 2005
TL;DR: In this article, the authors outline the key principles and parameters which describe and define the operation of optical waveguides and fibres, including dispersion and non linear effects, and provide the foundation for understanding the detailed operation of a wide variety of optical components.
Abstract: In this chapter, after presenting a brief review of the various types of optical waveguides, we outline the key principles and parameters which describe and define the operation of optical waveguides and fibres The ways in which propagation through optical fibres affects the properties of the guided waves are discussed, including dispersion and non linear effects Power transfer between propagating waves is essential to the operation of a number of components and the fundamentals of coupling theory are reviewed In summary, the theory given provides the foundation for understanding the detailed operation of a wide variety of optical components and systems based on optical fibre technology
1,867 citations