scispace - formally typeset


Optical fiber

About: Optical fiber is a(n) research topic. Over the lifetime, 167075 publication(s) have been published within this topic receiving 1827474 citation(s). The topic is also known as: optical fibre & fiber optic.

More filters
Govind P. Agrawal1
01 Jan 1989
Abstract: Nonlinear fiber optics concerns with the nonlinear optical phenomena occurring inside optical fibers. Although the field ofnonlinear optics traces its beginning to 1961, when a ruby laser was first used to generate the second-harmonic radiation inside a crystal [1], the use ofoptical fibers as a nonlinear medium became feasible only after 1970 when fiber losses were reduced to below 20 dB/km [2]. Stimulated Raman and Brillouin scatterings in single-mode fibers were studied as early as 1972 [3] and were soon followed by the study of other nonlinear effects such as self- and crossphase modulation and four-wave mixing [4]. By 1989, the field ofnonlinear fiber optics has advanced enough that a whole book was devoted to it [5]. This book or its second edition has been translated into Chinese, Japanese, and Russian languages, attesting to the worldwide activity in the field of nonlinear fiber optics.

15,319 citations

01 Jan 1992
Abstract: Preface. 1 Introduction. 1.1 Historical Perspective. 1.2 Basic Concepts. 1.3 Optical Communication Systems. 1.4 Lightwave System Components. Problems. References. 2 Optical Fibers. 2.1 Geometrical-Optics Description. 2.2 Wave Propagation. 2.3 Dispersion in Single-Mode Fibers. 2.4 Dispersion-Induced Limitations. 2.5 Fiber Losses. 2.6 Nonlinear Optical Effects. 2.7 Fiber Design and Fabrication. Problems. References. 3 Optical Transmitters. 3.1 Semiconductor Laser Physics. 3.2 Single-Mode Semiconductor Lasers. 3.3 Laser Characteristics. 3.4 Optical Signal Generation. 3.5 Light-Emitting Diodes. 3.6 Transmitter Design. Problems. References. 4 Optical Receivers. 4.1 Basic Concepts. 4.2 Common Photodetectors. 4.3 Receiver Design. 4.4 Receiver Noise. 4.5 Coherent Detection. 4.6 Receiver Sensitivity. 4.7 Sensitivity Degradation. 4.8 Receiver Performance. Problems. References. 5 Lightwave Systems. 5.1 System Architectures. 5.2 Design Guidelines. 5.3 Long-Haul Systems. 5.4 Sources of Power Penalty. 5.5 Forward Error Correction. 5.6 Computer-Aided Design. Problems. References. 6 Multichannel Systems. 6.1 WDM Lightwave Systems. 6.2 WDM Components. 6.3 System Performance Issues. 6.4 Time-Division Multiplexing. 6.5 Subcarrier Multiplexing. 6.6 Code-Division Multiplexing. Problems. References. 7 Loss Management. 7.1 Compensation of Fiber Losses. 7.2 Erbium-Doped Fiber Amplifiers. 7.3 Raman Amplifiers. 7.4 Optical Signal-To-Noise Ratio. 7.5 Electrical Signal-To-Noise Ratio. 7.6 Receiver Sensitivity and Q Factor. 7.7 Role of Dispersive and Nonlinear Effects. 7.8 Periodically Amplified Lightwave Systems. Problems. References. 8 Dispersion Management. 8.1 Dispersion Problem and Its Solution. 8.2 Dispersion-Compensating Fibers. 8.3 Fiber Bragg Gratings. 8.4 Dispersion-Equalizing Filters. 8.5 Optical Phase Conjugation. 8.6 Channels at High Bit Rates. 8.7 Electronic Dispersion Compensation. Problems. References. 9 Control of Nonlinear Effects. 9.1 Impact of Fiber Nonlinearity. 9.2 Solitons in Optical Fibers. 9.3 Dispersion-Managed Solitons. 9.4 Pseudo-linear Lightwave Systems. 9.5 Control of Intrachannel Nonlinear Effects. Problems. References. 10 Advanced Lightwave Systems. 10.1 Advanced Modulation Formats. 10.2 Demodulation Schemes. 10.3 Shot Noise and Bit-Error Rate. 10.4 Sensitivity Degradation Mechanisms. 10.5 Impact of Nonlinear Effects. 10.6 Recent Progress. 10.7 Ultimate Channel Capacity. Problems. References. 11 Optical Signal Processing. 11.1 Nonlinear Techniques and Devices. 11.2 All-Optical Flip-Flops. 11.3 Wavelength Converters. 11.4 Ultrafast Optical Switching. 11.5 Optical Regenerators. Problems. References. A System of Units. B Acronyms. C General Formula for Pulse Broadening. D Software Package.

4,090 citations

Journal ArticleDOI
17 Jan 2003-Science
Abstract: Photonic crystal fibers guide light by corralling it within a periodic array of microscopic air holes that run along the entire fiber length Largely through their ability to overcome the limitations of conventional fiber optics—for example, by permitting low-loss guidance of light in a hollow core—these fibers are proving to have a multitude of important technological and scientific applications spanning many disciplines The result has been a renaissance of interest in optical fibers and their uses

3,758 citations

Journal ArticleDOI
04 Oct 2006
Abstract: A topical review of numerical and experimental studies of supercontinuum generation in photonic crystal fiber is presented over the full range of experimentally reported parameters, from the femtosecond to the continuous-wave regime. Results from numerical simulations are used to discuss the temporal and spectral characteristics of the supercontinuum, and to interpret the physics of the underlying spectral broadening processes. Particular attention is given to the case of supercontinuum generation seeded by femtosecond pulses in the anomalous group velocity dispersion regime of photonic crystal fiber, where the processes of soliton fission, stimulated Raman scattering, and dispersive wave generation are reviewed in detail. The corresponding intensity and phase stability properties of the supercontinuum spectra generated under different conditions are also discussed.

3,067 citations

Journal ArticleDOI
Abstract: In this paper, we describe the spectral characteristics that can be achieved in fiber reflection (Bragg) and transmission gratings. Both principles for understanding and tools for designing fiber gratings are emphasized. Examples are given to illustrate the wide variety of optical properties that are possible in fiber gratings. The types of gratings considered include uniform, apodized, chirped, discrete phase-shifted, and superstructure gratings; short-period and long-period gratings; symmetric and tilted gratings; and cladding-mode and radiation-mode coupling gratings.

3,022 citations

Network Information
Related Topics (5)
Photonic crystal

43.4K papers, 887K citations

92% related
Transmission (telecommunications)

171.3K papers, 1.2M citations

89% related

353.1K papers, 4.3M citations

89% related

76.5K papers, 1M citations

89% related

58K papers, 824.8K citations

88% related
No. of papers in the topic in previous years