scispace - formally typeset
Search or ask a question

Showing papers on "Optical fiber published in 2002"


Journal ArticleDOI
11 Oct 2002-Science
TL;DR: In this paper, the authors reported on stimulated Raman scattering in an approximately 1-meter-long hollow-core photonic crystal fiber filled with hydrogen gas under pressure, which was guided and confined in the 15-micrometer-diameter hollow core by a two-dimensional photonic bandgap.
Abstract: We report on stimulated Raman scattering in an approximately 1-meter-long hollow-core photonic crystal fiber filled with hydrogen gas under pressure. Light was guided and confined in the 15-micrometer-diameter hollow core by a two-dimensional photonic bandgap. Using a pulsed laser source (pulse duration, 6 nanoseconds; wavelength, 532 nanometers), the threshold for Stokes (longer wavelength) generation was observed at pulse energies as low as 800 ± 200 nanojoules, followed by a coherent anti-Stokes (shorter wavelength) generation threshold at 3.4 ± 0.7 microjoules. The pump-to-Stokes conversion efficiency was 30 ± 3% at a pulse energy of only 4.5 microjoules. These energies are almost two orders of magnitude lower than any other reported energy, moving gas-based nonlinear optics to previously inaccessible parameter regimes of high intensity and long interaction length.

961 citations


Journal ArticleDOI
TL;DR: In this article, an optical biosensor with unprecedented sensitivity for detection of unlabeled molecules is presented. But the method relies on the use of a dielectric microparticle (whispering gallery modes) as the physical transducing mechanism.
Abstract: We present an optical biosensor with unprecedented sensitivity for detection of unlabeled molecules. Our device uses optical resonances in a dielectric microparticle (whispering gallery modes) as the physical transducing mechanism. The resonances are excited by evanescent coupling to an eroded optical fiber and detected as dips in the light intensity transmitted through the fiber at different wavelengths. Binding of proteins on the microparticle surface is measured from a shift in resonance wavelength. We demonstrate the sensitivity of our device by measuring adsorption of bovine serum albumin and we show its use as a biosensor by detecting streptavidin binding to biotin.

955 citations


Journal ArticleDOI
TL;DR: An applications-oriented review of optical parametric amplifiers in fiber communications is presented, focusing on the intriguing applications enabled by the parametric gain, such as all-optical signal sampling, time-demultiplexing, pulse generation, and wavelength conversion.
Abstract: An applications-oriented review of optical parametric amplifiers in fiber communications is presented. The emphasis is on parametric amplifiers in general and single pumped parametric amplifiers in particular. While a theoretical framework based on highly efficient four-photon mixing is provided, the focus is on the intriguing applications enabled by the parametric gain, such as all-optical signal sampling, time-demultiplexing, pulse generation, and wavelength conversion. As these amplifiers offer high gain and low noise at arbitrary wavelengths with proper fiber design and pump wavelength allocation, they are also candidate enablers to increase overall wavelength-division-multiplexing system capacities similar to the more well-known Raman amplifiers. Similarities and distinctions between Raman and parametric amplifiers are also addressed. Since the first fiber-based parametric amplifier experiments providing net continuous-wave gain in the for the optical fiber communication applications interesting 1.5-/spl mu/m region were only conducted about two years ago, there is reason to believe that substantial progress may be made in the future, perhaps involving "holey fibers" to further enhance the nonlinearity and thus the gain. This together with the emergence of practical and inexpensive high-power pump lasers may in many cases prove fiber-based parametric amplifiers to be a desired implementation in optical communication systems.

857 citations


Journal ArticleDOI
TL;DR: This review describes recent progress on plastic optical fiber lasers and amplifiers with lanthanides and focuses especially on the design and selection of plastic optical Fiber and chelate materials.
Abstract: Organic dye-doped polymers have been widely investigated as gain media in solid-state dye lasers. Dye molecules which have large absorption and induced emission cross sections due to allowed π-π transitions are ideal active dopants for the generation and amplification of intense light pulses. However, continuous wave operation is not feasible with organic dyes because of the triplet losses. On the other hand, lanthanide ions that have long metastable state lifetimes are widely used in silica glass-based fiber amplifiers and for both continuous and pulsed lasers. It has been more than 30 years since the first lanthanide lasers were reported.1-3 During this period a wide variety of lanthanide lasers and amplifiers have been investigated, and extensive progress has been made by many researchers. Many reviews have been written concentrating primarily on the physical and chemical properties of lanthanides in many matrices for laser action.4-8 Recently, several books have focused on lanthanide-doped fiber amplifiers for optical communications.9-11 The success of lanthanide-doped fiber amplifiers has inspired thousands of publications and continues to motivate research on the many diverse components that are required in these systems. Optical links are now used primarily in applications such as telecommunications with single-mode silica optical fibers, which have the ability to provide high-bandwidth and long-distance communications. However, as the demand for bandwidth increases in the office and home, it has become increasingly important to develop very low cost optical links that can be readily installed by users. Plastic optical fibers (POF) have received increasing attention because of their clear technical advantages over glass fibers, such as flexibility and a large core diameter, which enables efficient connection and coupling resulting in a low-cost system for a local area network. Recently a low-loss (100 db/km), highbandwidth 5.12 GHz for 100 m transmission graded index plastic optical fiber (GI-POF) has been developed.12 Also, an all fluorinated POF, whose low loss region is extended to the visible and near-infrared, has been successfully prepared.13 Plastic optical fiber amplifiers (POFA) that generate signal light in the visible and near-infrared are potentially important because of their adaptability for POF-based short span optical local distribution networks. This review describes recent progress on plastic optical fiber lasers and amplifiers with lanthanides. We focus especially on the design and selection of plastic optical fiber and chelate materials.

803 citations


Journal ArticleDOI
TL;DR: In this paper, the sensitivity of long-period fiber gratings (LPFGs) is investigated as a function of temperature, strain, and surrounding refractive index, with particular attention to the higher order cladding modes and the possibilities for ultrasensitive sensors.
Abstract: We present a detailed investigation into the sensitivity of long-period fiber gratings (LPFGs) as a function of temperature, strain, and surrounding refractive index, with particular attention to the higher order cladding modes and the possibilities for ultrasensitive sensors. From a general theoretical analysis, we identify a general sensitivity factor which offers new physical insight into LPFG behavior and represents a useful design aid in conjunction with a set of measurand-specific sensitivity factors. Our analysis reveals the existence of turning points in the mode dispersion characteristics at which ultrasensitive operation may be obtained. In an extensive set of coordinated experiments, we verify the theoretical predictions with close agreement and provide demonstrations of the device behavior close to the turning points. Alternative sensor schemes for temperature, strain, and refractive index based, respectively, on measurement of the dual resonance characteristic of the modes and on the transmission characteristics close to the turning points, utilizing higher order modes of the LPFG, are presented. For two variables at least, we record the highest LPFG sensitivities yet reported.

744 citations


Journal ArticleDOI
TL;DR: In this paper, an out-of-plane coupler for butt-coupling from fiber to compact planar waveguides is proposed based on a short second-order grating or photonic crystal, etched in a waveguide with a low-index oxide cladding.
Abstract: We have designed and fabricated an out-of-plane coupler for butt-coupling from fiber to compact planar waveguides. The coupler is based on a short second-order grating or photonic crystal, etched in a waveguide with a low-index oxide cladding. The coupler is optimized using mode expansion-based simulations. Simulations using a 2-D model show that up to 74% coupling efficiency between single-mode fiber and a 240-nm-thick GaAs-AlO/sub x/ waveguide is possible. We have measured 19% coupling efficiency on test structures.

687 citations


Journal ArticleDOI
12 Dec 2002-Nature
TL;DR: The design and drawing of a hollow optical fibre lined with an interior omnidirectional dielectric mirror is reported, demonstrating that low attenuation can be achieved through structural design rather than high-transparency material selection.
Abstract: Conventional solid-core optical fibres require highly transparent materials. Such materials have been difficult to identify owing to the fundamental limitations associated with the propagation of light through solids, such as absorption, scattering and nonlinear effects. Hollow optical fibres offer the potential to minimize the dependence of light transmission on fibre material transparency. Here we report on the design and drawing of a hollow optical fibre lined with an interior omnidirectional dielectric mirror. Confinement of light in the hollow core is provided by the large photonic bandgaps established by the multiple alternating submicrometre-thick layers of a high-refractive-index glass and a low-refractive-index polymer. The fundamental and high-order transmission windows are determined by the layer dimensions and can be scaled from 0.75 to 10.6 micro m in wavelength. Tens of metres of hollow photonic bandgap fibres for transmission of carbon dioxide laser light at 10.6 micro m wavelength were drawn. The transmission losses are found to be less than 1.0 dB m(-1), orders of magnitude lower than those of the intrinsic fibre material, thus demonstrating that low attenuation can be achieved through structural design rather than high-transparency material selection.

640 citations


Journal ArticleDOI
TL;DR: A new regime of guidance is identified in which the spectral properties of these structures are largely determined by the thickness of the high-index layers and the refractive-index contrast and are not particularly sensitive to the period of the cladding layers.
Abstract: We propose a simple analytical theory for low-index core photonic bandgap optical waveguides based on an antiresonant reflecting guidance mechanism. We identify a new regime of guidance in which the spectral properties of these structures are largely determined by the thickness of the high-index layers and the refractive-index contrast and are not particularly sensitive to the period of the cladding layers. The attenuation properties are controlled by the number of high/low-index cladding layers. Numerical simulations with the beam propagation method confirm the predictions of the analytical model. We discuss the implications of the results for photonic bandgap fibers.

576 citations


Journal ArticleDOI
TL;DR: This work demonstrates photonic crystal fibers with ultra-flattened, near zero dispersion with micro-structured fibers showing dispersion of 0 +/- 0.6 ps/nm from 1.24 microm-1.6 microm wavelength.
Abstract: We demonstrate photonic crystal fibers with ultra-flattened, near zero dispersion. Two micro-structured fibers showing dispersion of 0 ± 0.6 ps/nm.km from 1.24 μm-1.44 μm wavelength and 0 ± 1.2 ps/nm.km over 1 μm-1.6 μm wavelength have been measured.

523 citations


Patent
05 Mar 2002
TL;DR: In this article, an optical coherence tomography (OCT) device was proposed, which irradiates a biological tissue with low coherence light, obtains a high resolution tomogram of the inside of the tissue by low-coherent interference with scattered light from the tissue, and is provided with an optical probe which includes an optical fiber having a flexible and thin insertion part for introducing the low coherent light.
Abstract: An Optical Coherence Tomography (OCT) device irradiates a biological tissue with low coherence light, obtains a high resolution tomogram of the inside of the tissue by low-coherent interference with scattered light from the tissue, and is provided with an optical probe which includes an optical fiber having a flexible and thin insertion part for introducing the low coherent light. When the optical probe is inserted into a blood vessel or a patient's body cavity, the OCT enables the doctor to observe a high resolution tomogram. In a optical probe, generally, a fluctuation of a birefringence occurs depending on a bend of the optical fiber, and this an interference contrast varies depending on the condition of the insertion. The OCT of the present invention is provided with polarization compensation means such as a Faraday rotator on the side of the light emission of the optical probe, so that the OCT can obtain the stabilized interference output regardless of the state of the bend.

453 citations


Journal ArticleDOI
TL;DR: A new mode solver is described which uses Yee's 2-D mesh and an index averaging technique to provide a full-vectorial finite-difference analysis of microstructured optical fibers.
Abstract: In this paper we present a full-vectorial finite-difference analysis of microstructured optical fibers. A new mode solver is described which uses Yee's 2-D mesh and an index averaging technique. The modal characteristics are calculated for both conventional optical fibers and microstructured optical fibers. Comparison with previous finite difference mode solvers and other numerical methods is made and excellent agreement is achieved.

Journal ArticleDOI
TL;DR: In this paper, the femtosecond pulses from an unamplified Ti:sapphire laser with energies up to 4 nJ were used, and the resultant spectra from several photonic crystal fibers and taper structures were compared and analyzed.
Abstract: Broadband continua extending from 400 to 1600 nm are generated in photonic crystal fibers and in tapered conventional optical fibers. The continuum is generated in the fundamental fiber mode. Femtosecond pulses from an unamplified Ti:sapphire laser with energies up to 4 nJ are used, and the resultant spectra from several photonic crystal fibers and taper structures are compared and analyzed.

Journal ArticleDOI
TL;DR: In this paper, two different approaches to dope a polymer waveguide with rare-earth ions are presented, one based on organic cage-like complexes that encapsulate the rare earth ion and the other based on Er-doped silica colloidal spheres.
Abstract: Optical waveguide amplifiers based on polymer materials offer a low-cost alternative for inorganic waveguide amplifiers. Due to the fact that their refractive index is similar to that of standard optical fibers, they can be easily coupled to existing fibers with low coupling losses. Doping the polymer with rare-earth ions that yield optical gain is not straightforward, as the rare-earth salts are poorly soluble in the polymer matrix. This review article focuses on two different approaches to dope a polymer waveguide with rare-earth ions. The first approach is based on organic cage-like complexes that encapsulate the rare-earth ion and are designed to provide coordination sites to bind the rare-earth ion and to shield it from the surrounding matrix. These complexes also offer the possibility of attaching a highly absorbing antenna group, which increases the pump efficiency significantly. The second approach to fabricate rare-earth doped polymer waveguides is obtained by combining the excellent properties of SiO2 as a host for rare-earth ions with the easy processing of polymers. This is done by doping polymers with Er-doped silica colloidal spheres.

Journal ArticleDOI
TL;DR: The fabrication and properties of soft glass photonic crystal fibers for supercontinuum generation have zero or anomalous group velocity dispersion at wavelengths around 1550 nm, and approximately an order of magnitude higher nonlinearity than attainable in comparable silica fibers.
Abstract: We report the fabrication and properties of soft glass photonic crystal fibers (PCF's) for supercontinuum generation. The fibers have zero or anomalous group velocity dispersion at wavelengths around 1550 nm, and approximately an order of magnitude higher nonlinearity than attainable in comparable silica fibers. We demonstrate the generation of an ultrabroad supercontinuum spanning at least 350 nm to 2200 nm using a 1550 nm ultrafast pump source.

Journal ArticleDOI
19 Apr 2002-Science
TL;DR: The design and fabrication of a multilayered macroscopic fiber preform and the subsequent drawing and optical characterization of extended lengths of omnidirectional dielectric mirror fibers with submicrometer layer thickness are reported.
Abstract: We report the design and fabrication of a multilayered macroscopic fiber preform and the subsequent drawing and optical characterization of extended lengths of omnidirectional dielectric mirror fibers with submicrometer layer thickness. A pair of glassy materials with substantially different indices of refraction, but with similar thermomechanical properties, was used to construct 21 layers of alternating refractive index surrounding a tough polymer core. Large directional photonic band gaps and high reflection efficiencies comparable to those of the best metallic reflectors were obtained. Potential applications of these fibers include woven fabrics for radiation barriers, spectral authentication of cloth, and filters for telecommunications.

Journal ArticleDOI
TL;DR: In this article, the second and third-harmonic generation (SHG, THG) were imaged on single zinc oxide (ZnO) nanowires using near-field scanning optical microscopy (NSOM).
Abstract: The nonlinear optical response of semiconductor nanowires has potential application for frequency conversion in nanoscale optical circuitry. Here, second- and third-harmonic generation (SHG, THG) are imaged on single zinc oxide (ZnO) nanowires using near-field scanning optical microscopy (NSOM). The absolute magnitudes of the two independent (2) elements of a single wire are determined, and the nanowire SHG and THG emission patterns as a function of incident polarization are attributed to the hexagonal nanowire geometry and (2) tensor symmetry. Semiconductor nanowires are of current interest because of their unique electrical and optical properties. 1-3 In particular, their nonlinear optical properties suggest potential applications as frequency converters or logic/routing elements in nanoscale optoelectronic circuitry. A linear optical property of nanowires, photoluminescence (PL) polarization, has recently been studied in single indium phosphide nanowires. 2 In that case, the PL polarization is based upon the classical electromagnetic properties of a dielectric cylinder and averages ca. 91%. In contrast, coherent nonlinear optical phenomena, such as second- and third-harmonic generation (SHG and THG, respectively), depend explicitly on the crystal lattice structure of the medium, which could yield a very high (nearly 100%) polarization selectivity. In addition, the temporal response of the nonresonant harmonic generation is similar to the pulse width of the pump laser, in some cases 20 fs, 4 while incoherent processes are at least 2-4 orders of magnitude slower. Moreover, nonresonant SHG is essentially independent of wavelength below the energy band gap of semiconductor materials, most often including the 1.3-1.5 Im wavelength region typically used in optical fiber

Patent
12 Apr 2002
TL;DR: In this article, materials for forming high index-contrast fiber waveguides, and applications of high index contrast fiber waveguide are disclosed, as well as applications of such waveguiders.
Abstract: High index-contrast fiber waveguides, materials for forming high index-contrast fiber waveguides, and applications of high index-contrast fiber waveguides are disclosed.

Book ChapterDOI
29 Apr 2002

Patent
27 Sep 2002
TL;DR: In this paper, a relatively small fiber optic plug is provided to facilitate pulling of an associated fiber optic cable through small passageways, and a cap mounted upon and adapted to swivel relative to the remainder of the plug is used to serve as a pulling grip during installation.
Abstract: A relatively small fiber optic plug (10) is provided to facilitate pulling of the fiber optic plug and an associated fiber optic cable (12) through small passageways. The fiber optic plug may include a shroud (56) that protects the fiber optic connector and that may further define at least one opening (58), and preferably a pair of openings. The openings are sized to receive portions of an adapter sleeve once the fiber optic plug is mated with a fiber optic receptacle. The fiber optic plug may also include a cap mounted upon and adapted to swivel relative to the remainder of the fiber optic plug to serve as a pulling grip during installation of the fiber optic cable. Further, the fiber optic plug may include a crimp band that is mchanically coupled to both the fiber optic cable and the plug body in order to isolate the fiber optic connector from torque otherwise created by forces to which the fiber optic cable is subjected.

Patent
28 Feb 2002
TL;DR: In this paper, an optical switching arrangement is provided with continuously rotating mirros (8, 9, 10) which are preferably micro-machined, each deflecting light from an associated optical input (2, 3, 4), preferably mono-mode optical fibres, towards optical outputs (5, 6, 7) in sequence.
Abstract: An optical switching arrangement is provided with continuously rotating mirros (8, 9, 10) which are preferably micro-machined, each deflecting light from an associated optical input (2, 3, 4), preferably mono-mode optical fibres, towards optical outputs (5, 6, 7) in sequence Further pairs of continuously rotating micro-machined mirrors (11/12, 13/14, 15/16) are each associated with respective optical outputs (5, 6, 7) to stabilise the direction of light that is to be coupled with the optical outputs so that better coupling is achieved The optical switching apparatus provides a faster switching arrangement and lower signal loss

Journal ArticleDOI
TL;DR: An overlay material was deposited by the Langmuir-Blodgett technique onto a single-mode optical fiber containing a long-period grating that exhibits characteristic attenuation bands in its transmission spectrum whose central wavelengths were observed to depend on the optical thickness of the overlay material.
Abstract: An overlay material was deposited by the Langmuir–Blodgett technique onto a single-mode optical fiber containing a long-period grating. The long-period grating exhibits characteristic attenuation bands in its transmission spectrum whose central wavelengths were observed to depend on the optical thickness of the overlay material, even for materials that have a refractive index higher than that of silica.

Patent
16 Jan 2002
TL;DR: The first optical fiber system, which optically interconnects the first laser radiation source and the first optical detector with an emission end on the rotatable portion, has the emission end disposed on the rotating part of the optical fiber.
Abstract: A laser based coordinate measuring device measures a position of a remote target. The laser based coordinate measuring device includes a stationary portion, a rotatable portion, and at least a first optical fiber. The stationary portion has at least a first laser radiation source and at least a first optical detector, and the rotatable portion is rotatable with respect to the stationary portion. The first optical fiber system, which optically interconnects the first laser radiation source and the first optical detector with an emission end of the first optical fiber system, has the emission end disposed on the rotatable portion. The emission end emits laser radiation to the remote target and receives laser radiation reflected from the remote target with the emission direction of the laser radiation being controlled according to the rotation of the rotatable portion.

Journal ArticleDOI
TL;DR: It is shown that the constructive supermodes, each of which has a single output in a different port, build up automatically because of the dense longitudinal-mode, length-unbalanced laser array with unbalanced port loss.
Abstract: Coherent addition of fiber lasers coupled with an intracavity fiber coupler is reported. Almost a single output is obtained from one of the fiber ports, which one can switch simply by unbalancing the losses in the ports. We show that the constructive supermodes, each of which has a single output in a different port, build up automatically because of the dense longitudinal-mode, length-unbalanced laser array with unbalanced port loss. High addition efficiencies of 93.6% for two fiber lasers and 95.6% for four fiber lasers have been obtained.

Journal ArticleDOI
TL;DR: Tests in a controlled environment indicate that the novel concept for an intrinsic relative humidity (RH) sensor that uses polyimide-recoated fiber Bragg gratings has a linear, reversible, and accurate response behavior.
Abstract: A novel concept for an intrinsic relative humidity (RH) sensor that uses polyimide-recoated fiber Bragg gratings is presented. Tests in a controlled environment indicate that the sensor has a linear, reversible, and accurate response behavior at 10-90% RH and at 13-60 degrees C. The RH and temperature sensitivities were measured as a function of coating thickness, and the thermal and hygroscopic expansion coefficients of the polyimide coating were determined.

Journal ArticleDOI
TL;DR: In this paper, the authors describe the numerical verifications of a multipole formulation for calculating the electromagnetic properties of the modes that propagate in microstructured optical fibers and illustrate the application of this formulation to calculating both the real and the imaginary parts of the propagation constant.
Abstract: We describe the numerical verifications of a multipole formulation for calculating the electromagnetic properties of the modes that propagate in microstructured optical fibers. We illustrate the application of this formulation to calculating both the real and the imaginary parts of the propagation constant. We compare its predictions with the results of recent measurements of a low-loss microstructured fiber and investigate the variations in fiber dispersion with geometrical parameters. We also show that the formulation obeys appropriate symmetry rules and that these rules may be used to improve computational speed.

Journal ArticleDOI
TL;DR: It is found that higher-order dispersion primarily determines the shape and width of the generated spectrum and that the fine spectral substructure exhibits extreme sensitivity to the initial pulse energy.
Abstract: A theoretical investigation of the propagation of femtosecond pulses under conditions similar to those of recent experiments in which a white-light continuum was generated in a microstructured fiber is presented. It is found that higher-order dispersion primarily determines the shape and width of the generated spectrum and that the fine spectral substructure exhibits extreme sensitivity to the initial pulse energy.

Journal ArticleDOI
TL;DR: In this paper, the nonlinear propagation of femtosecond pulses in photonic-crystal fibers is investigated theoretically without the use of the slowly varying envelope approximation, and it is shown that phase matching of degenerate four-wave mixing can be achieved in an extremely broad frequency range from the IR to the UV.
Abstract: The nonlinear propagation of femtosecond pulses in photonic-crystal fibers is investigated theoretically without the use of the slowly varying envelope approximation. Low-intensity supercontinuum generation caused by fission of higher-order solitons into red-shifted fundamental solitons and blue-shifted nonsolitonic radiation is studied in a large range of fiber and pulse parameters. It is shown that phase matching of degenerate four-wave mixing can be achieved in an extremely broad frequency range from the IR to the UV. Spontaneous generation of new frequency components and parametric amplification by four-wave mixing as well as its possible overlap with soliton fission are studied in detail.

Journal ArticleDOI
TL;DR: The experimental observation of stable pulse pairs with a +/-pi/2 phase difference in a passively mode-locked stretched-pulse fiber ring laser with a large range of pulse separations, without the need for external control.
Abstract: We report the experimental observation of stable pulse pairs with a +/-pi/2 phase difference in a passively mode-locked stretched-pulse fiber ring laser. In our setup the stabilization of interacting subpicosecond pulses is obtained with a large range of pulse separations, namely, from 2.7 to 10 ps, without the need for external control.

Journal ArticleDOI
TL;DR: Simulations and single-shot spectrum measurements confirmed that the fine structure does exist on a single- shot basis but washes out when many shots are averaged, and revealed fine-scale structure in the continuum spectrum.
Abstract: Cross-correlation frequency-resolved optical gating with an angle-dithered nonlinear-optical crystal permits measurement of the intensity and the phase of the ultrabroadband (as much as 1200 nm wide) continuum generated from microstructure optical fiber. Retrieval revealed fine-scale structure in the continuum spectrum. Simulations and single-shot spectrum measurements confirmed that the fine structure does exist on a single-shot basis but washes out when many shots are averaged.

Patent
15 May 2002
TL;DR: In this paper, an integrated circuit/optoelectronic packaging system (100 ) consisting of OE and IC components packaged to provide electrical input/output, thermal management, an optical window, and precise passive or mechanical alignment to external optical receivers or transmitters.
Abstract: An integrated circuit/optoelectronic packaging system ( 100 ) which comprises OE and IC components packaged to provide electrical input/output, thermal management, an optical window, and precise passive or mechanical alignment to external optical receivers or transmitters. A transparent insulating substrate having electrical circuitry in a thin silicon layer formed on its top side is positioned between the optical fiber and the optoelectronic device such that an optical path is described between the optoelectronic device and the optical fiber core through the transparent insulating substrate. The optoelectronic devices are mounted on the transparent insulating substrate in a precise positional relationship to guide holes in the substrate. The optical fibers are fixed in an optical fiber connector and are held in a precise positional relationship to guide holes in the connector. Alignment is accomplished with complementary guide pins that pass through guide holes in the fiber optic connector and in the transparent substrate.