scispace - formally typeset
Search or ask a question
Topic

Optical microcavity

About: Optical microcavity is a research topic. Over the lifetime, 2599 publications have been published within this topic receiving 72125 citations. The topic is also known as: optical microcavities.


Papers
More filters
Journal ArticleDOI
TL;DR: The broad spectral tunability via a simple variation of the cavity thickness makes this innovative, flexible and potentially visibly transparent device principle highly suitable for integrated low-cost spectroscopic near-infrared photodetection.
Abstract: Blending organic electron donors and acceptors yields intermolecular charge-transfer states with additional optical transitions below their optical gaps. In organic photovoltaic devices, such states play a crucial role and limit the operating voltage. Due to its extremely weak nature, direct intermolecular charge-transfer absorption often remains undetected and unused for photocurrent generation. Here, we use an optical microcavity to increase the typically negligible external quantum efficiency in the spectral region of charge-transfer absorption by more than 40 times, yielding values over 20%. We demonstrate narrowband detection with spectral widths down to 36 nm and resonance wavelengths between 810 and 1,550 nm, far below the optical gap of both donor and acceptor. The broad spectral tunability via a simple variation of the cavity thickness makes this innovative, flexible and potentially visibly transparent device principle highly suitable for integrated low-cost spectroscopic near-infrared photodetection. Interfaces of organic donor-acceptor blends provide intermolecular charge-transfer states with red-shifted but weak absorption. By introducing an optical micro-cavity; Siegmundet al., enhance their photoresponse to achieve narrowband NIR photodetection with broad spectral tunability.

181 citations

Journal ArticleDOI
TL;DR: In this article, the authors report high efficiency, low voltage, and low power consumption of PHOLEDs using mixed host materials in the light-emitting layer (LEL) and various combinations of electron-injecting and electron-transporting layers.
Abstract: We report high-efficiency, low-voltage phosphorescent green and blue organic light-emitting diode (PHOLED) devices using mixed-host materials in the light-emitting layer (LEL) and various combinations of electron-injecting and electron-transporting layers. The low voltage does not rely on doping of the charge-transport layers. The mixed LEL architecture offers significantly improved efficiency and voltage compared to conventional PHOLEDs with neat hosts, in part by loosening the connection between the electrical band gap and the triplet energy. Bulk recombination in the LEL occurs within ∼10 nm of the interface with an electron-blocking layer. A “hole-blocking layer” need not have hole- or triplet-exciton-blocking properties. Optical microcavity effects on the spectrum and efficiency were used to locate the recombination zone. The effect of layer thickness on drive voltage was used to determine the voltage budget of a typical device. The behavior of undoped devices was investigated, and the electrolumines...

181 citations

Journal ArticleDOI
TL;DR: An approach that utilizes the optical spring effect in a high-Q coherent optomechanical oscillator to dramatically enhance the sensing resolution by orders of magnitude compared with conventional approaches is proposed, allowing us to detect single bovine serum albumin proteins with a molecular weight of 66 kDa at a signal-to-noise ratio of 16.8.
Abstract: Label-free bio-sensing is a critical functionality underlying a variety of health- and security-related applications. Micro-/nano-photonic devices are well suited for this purpose and have emerged as promising platforms in recent years. Here we propose and demonstrate an approach that utilizes the optical spring effect in a high-Q coherent optomechanical oscillator to dramatically enhance the sensing resolution by orders of magnitude compared with conventional approaches, allowing us to detect single bovine serum albumin proteins with a molecular weight of 66 kDa at a signal-to-noise ratio of 16.8. The unique optical spring sensing approach opens up a distinctive avenue that not only enables biomolecule sensing and recognition at individual level, but is also of great promise for broad physical sensing applications that rely on sensitive detection of optical cavity resonance shift to probe external physical parameters. Detection of a single nanoparticle or molecule is essential for many applications. Here, Yu et al.demonstrate the use of an optical cavity with optomechanical oscillation to detect single bovine serum albumin proteins, with potential for studying mechanical properties and interactions of individual molecules.

180 citations

Journal ArticleDOI
TL;DR: In this paper, a ladder-type polymer in an optical microcavity was used to realize room-temperature operation of a polariton transistor through vibron-mediated stimulated polariton relaxation.
Abstract: Active optical elements with ever smaller footprint and lower energy consumption are central to modern photonics. The drive for miniaturization, speed and efficiency, with the concomitant volume reduction of the optically active area, has led to the development of devices that harness strong light–matter interactions. By managing the strength of light–matter coupling to exceed losses, quasiparticles, called exciton-polaritons, are formed that combine the properties of the optical fields with the electronic excitations of the active material. By making use of polaritons in inorganic semiconductor microcavities, all-optical transistor functionality was observed, albeit at cryogenic temperatures1. Here, we replace inorganic semiconductors with a ladder-type polymer in an optical microcavity and realize room-temperature operation of a polariton transistor through vibron-mediated stimulated polariton relaxation. We demonstrate net gain of ~10 dB μm−1, sub-picosecond switching time, cascaded amplification and all-optical logic operation at ambient conditions. Net gain of ~10 dB µm–1 and sub-picosecond switching time are shown at room temperature for optical transistors using polymers in a microcavity.

179 citations

Book
30 Oct 1995
TL;DR: Weisbuch et al. as discussed by the authors presented a simple theory on the effect of Dephasing of Vacuum Fields on Spontaneous Emission in a Microcavity, Y. Yamamoto.
Abstract: Spontaneous Emission in Optical Cavities: A Tutorial Review, E.V. Goldstein and P. Meystre Introduction Free Space Spontaneous Emission Spontaneous Emission in Cavities Velocity-Dependent Spontaneous Emission Conclusion A Simple Theory on the Effect of Dephasing of Vacuum Fields on Spontaneous Emission in a Microcavity, Y. Lee Introduction Theoretical Model I Theoretical Model II Summary Appendicies A-C Effects of Atomic Broadening on Spontaneous Emission in an Optical Microcavity, K. Ujihara Introduction Analysis of Spontaneous Emission Discussion and Conclusion Microcavities and Semiconductors: The Strong-Coupling Regime, C. Weisbuch, R. Houdre, and R.P. Stanley Introduction The Fabry-Perot Resonator: A Planar Microcavity Models of Strong Light-Matter Coupling Optics of Semiconductors Conclusion Electromagnetic Field Mode Density Calculated via Mode Counting, S.D. Brorson Introduction No Confinement: A Dipole in Free Space One Dimension of Confinement: The Planar Mirror Cavity Two Dimensions of Confinement: The Waveguide Cavity Three Dimensions of Confinement: The Box Microcavity Discussion Spontaneous Emission in Dielectric Planar Microcavities, G. Bjork and Y. Yamamoto Introduction The Ideal Planar Cavity Fundamentals of Dielectric Bragg Mirrors Dielectric Cavity Spontaneous Emission Pattern Dielectric Cavity Spontaneous Emission Lifetime Dielectric Cavity Stimulated Emission Conclusions and Outlooks Spontaneous Emission in Microcavity Surface Emitting Lasers, T. Baba and K. Iga Introduction Spontaneous Emission in a Microcavity Expression of Radiation Energy Modes in Microcavity SELS Spontaneous Emission Factor Effects of Electron Quantum Confinement Lasing Characteristics Summary Spontaneous and Stimulated Emission in the Microcavity Laser, H. Yokoyama Introduction Photon Emission in Microcavities Microcavity Lasers Microcavity Semiconductor Lasers Prospects for Device Applications Summary Recent Progress in Optical Microcavity Experiments, H. Yokoyama Introduction Cavity Configurations Alterations in Spontaneous Emission Properties Laser Oscillation Summary Application of Microcavities: New Photoelectronic Integrated Systems, I. Hayashi Introduction Photoelectronic Integrated Systems Micro-Photoelectronic Devices Summary and Future Prospects Index

178 citations


Network Information
Related Topics (5)
Quantum dot
76.7K papers, 1.9M citations
87% related
Optical fiber
167K papers, 1.8M citations
86% related
Laser
353.1K papers, 4.3M citations
86% related
Band gap
86.8K papers, 2.2M citations
84% related
Nanowire
52K papers, 1.5M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202317
202220
202152
202063
201990
201846