scispace - formally typeset
Search or ask a question
Topic

Optical microcavity

About: Optical microcavity is a research topic. Over the lifetime, 2599 publications have been published within this topic receiving 72125 citations. The topic is also known as: optical microcavities.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, quasi-normal modes are used to characterize transmission resonances in 1D optical defect cavities and related field approximations, and a variational principle permits to represent the field and the spectral transmission close to resonances.

16 citations

Journal ArticleDOI
TL;DR: This technique provides a new way to prepare semiconductor nanotubes for new photonic devices and photoelectric applications through a simple thermal evaporation co-deposition technique with Sn metal nanowire templating and ejection.
Abstract: Nanotubes are often formed by the folding of one-layer or multilayer compounds under microscopic catalytic growth conditions. Here, CdS nanotubes with tunable wall sizes and optical microcavities were prepared via a simple thermal evaporation co-deposition technique with Sn metal nanowire templating and ejection. Compared to core-shell Sn/CdS nanowires, which have poor microcavity quality, the hollow/CdS nanotubes have a higher quality factor (Q) that can reach approximately 400 in the spectral range of 550-800 nm when excited by a continuous-wave 405 nm laser. This high Q factor leads to low-threshold lasing and line-width narrowing due to the mode selection, which are important in many fields, including lasers, sensors, communications, and optical storage. A theoretical mode analysis of the hollow/CdS nanotubes with different thicknesses addressed their microcavity mode confinement and enhancements. This technique provides a new way to prepare semiconductor nanotubes for new photonic devices and photoelectric applications.

16 citations

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate a method to measure the thermal relaxation time and effective thermal conductance of a whispering gallery mode microcavity using optothermal effect, which can be applied to various resonators in different forms.
Abstract: Thermal properties of a photonic resonator are determined not only by intrinsic properties of materials, such as thermo-optic coefficient, but also by the geometry and structure of the resonator. Techniques for characterization and measurement of thermal properties of individual photonic resonator will benefit numerous applications. In this work, we demonstrate a method to optically measure the thermal relaxation time and effective thermal conductance of a whispering gallery mode microcavity using optothermal effect. Two nearby optical modes within the cavity are optically probed, which allows us to quantify the thermal relaxation process of the cavity by analyzing changes in the transmission spectra induced by optothermal effect. We show that the effective thermal conductance can be experimentally deduced from the thermal relaxation measurement, and it can be tailored by changing the geometric parameters of the cavity. The experimental observations are in good agreement with the proposed analytical modeling. This method can be applied to various resonators in different forms.

16 citations

Journal ArticleDOI
Frank C. Spano1
TL;DR: Polaritons in an ensemble of permutationally symmetric chromophores confined to an optical microcavity are investigated numerically and a straightforward ensemble partitioning scheme is introduced, which allows accurate evaluations of the lowest-energy polaritons using a subset of collective states.
Abstract: Polaritons in an ensemble of permutationally symmetric chromophores confined to an optical microcavity are investigated numerically. The analysis is based on the Holstein–Tavis–Cummings Hamiltonian which accounts for the coupling between an electronic excitation on each chromophore and a single cavity mode, as well as the coupling between the electronic and nuclear degrees of freedom on each chromophore. A straightforward ensemble partitioning scheme is introduced, which, along with an intuitive ansatz, allows one to obtain accurate evaluations of the lowest-energy polaritons using a subset of collective states. The polaritons include all three degrees of freedom—electronic, vibronic, and photonic—and can therefore be described as exciton–phonon polaritons. Applications focus on the limiting regimes where the Rabi frequency is small or large compared to the nuclear relaxation energy subsequent to optical excitation, with relaxation occurring mainly along the vinyl stretching coordinate in conjugated organic chromophores. Comparisons are also made to the more conventional vibronic polariton approach, which does not take into account two-particle excitations and vibration–photon states.

16 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the supermode Raman laser in a whispering-gallery microcavity and demonstrate experimentally its single-mode lasing behavior with a sidemode suppression ratio (SMSR) up to 37 dB, despite the emergence of near-degenerate supermodes by the backscattering between counterpropagating waves.
Abstract: Microlasers in near-degenerate supermodes lay the cornerstone for studies of non-Hermitian physics, novel light sources, and advanced sensors. Recent experiments of the stimulated scattering in supermode microcavities reported beating phenomena, interpreted as dual-mode lasing, which, however, contradicts their single-mode nature due to the clamped pump field. Here, we investigate the supermode Raman laser in a whispering-gallery microcavity and demonstrate experimentally its single-mode lasing behavior with a side-mode suppression ratio (SMSR) up to 37 dB, despite the emergence of near-degenerate supermodes by the backscattering between counterpropagating waves. Moreover, the beating signal is recognized as the transient interference during the switching process between the two supermode lasers. Self-injection is exploited to manipulate the lasing supermodes, where the SMSR is further improved by 15 dB and the laser linewidth is below 100 Hz.

16 citations


Network Information
Related Topics (5)
Quantum dot
76.7K papers, 1.9M citations
87% related
Optical fiber
167K papers, 1.8M citations
86% related
Laser
353.1K papers, 4.3M citations
86% related
Band gap
86.8K papers, 2.2M citations
84% related
Nanowire
52K papers, 1.5M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202317
202220
202152
202063
201990
201846