scispace - formally typeset
Search or ask a question
Topic

Optical microcavity

About: Optical microcavity is a research topic. Over the lifetime, 2599 publications have been published within this topic receiving 72125 citations. The topic is also known as: optical microcavities.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a spontaneous emission rate enhancement by a factor of up to 5 was selectively observed for the QB's which are on resonance with one-cavity mode. But the effect of the random spatial and spectral distributions of the QBs was not considered.
Abstract: Semiconductor quantum boxes (QB's) are well suited to cavity quantum electrodynamic experiments in the solid state because of their sharp emission. We study by time-resolved photoluminescence InAs QB's placed in the core of small-volume and high-finesse GaAs/AlAs pillar microresonators. A spontaneous emission rate enhancement by a factor of up to 5 is selectively observed for the QB's which are on resonance with one-cavity mode. We explain its magnitude by considering the Purcell figure of merit of the micropillars and the effect of the random spatial and spectral distributions of the QB's.

1,016 citations

Journal ArticleDOI
03 Sep 1998-Nature
TL;DR: In this article, an organic semiconductor microcavity that operates in the strong-coupling regime was shown to have characteristic mixing of the exciton and photon modes (anti-crossing), and a room-temperature vacuum Rabi splitting.
Abstract: The modification and control of exciton–photon interactions in semiconductors is of both fundamental1,2,3,4 and practical interest, being of direct relevance to the design of improved light-emitting diodes, photodetectors and lasers5,6,7. In a semiconductor microcavity, the confined electromagnetic field modifies the optical transitions of the material. Two distinct types of interaction are possible: weak and strong coupling1,2,3,4. In the former perturbative regime, the spectral and spatial distribution of the emission is modified but exciton dynamics are little altered. In the latter case, however, mixing of exciton and photon states occurs leading to strongly modified dynamics. Both types of effect have been observed in planar microcavity structures in inorganic semiconductor quantum wells and bulk layers1,2,3,4,5,6,7,8. But organic semiconductor microcavities have been studied only in the weak-coupling regime9,10,11,12,13,14,15,16,17,18. Here we report an organic semiconductor microcavity that operates in the strong-coupling regime. We see characteristic mixing of the exciton and photon modes (anti-crossing), and a room-temperature vacuum Rabi splitting (an indicator of interaction strength) that is an order of magnitude larger than the previously reported highest values for inorganic semiconductors. Our results may lead to new structures and device concepts incorporating hybrid states of organic and inorganic excitons19, and suggest that polariton lasing20,21,22 may be possible.

770 citations

Journal ArticleDOI
TL;DR: Polariton lasing at room temperature in an organic microcavity composed of a melt-grown anthracene single crystal sandwiched between two dielectric mirrors is reported in this paper.
Abstract: The optical properties of organic semiconductors are almost exclusively described using the Frenkel exciton picture1. In this description, the strong Coulombic interaction between an excited electron and the charged vacancy it leaves behind (a hole) is automatically taken into account. If, in an optical microcavity, the exciton–photon interaction is strong compared to the excitonic and photonic decay rates, a second quasiparticle, the microcavity polariton, must be introduced to properly account for this coupling2. Coherent, laser-like emission from polaritons has been predicted to occur when the ground-state occupancy of polaritons 〈ngs〉, reaches 1 (ref. 3). This process, known as polariton lasing, can occur at thresholds much lower than required for conventional lasing. Polaritons in organic semiconductors are highly stable at room temperature, but to our knowledge, there has as yet been no report of nonlinear emission from these structures. Here, we demonstrate polariton lasing at room temperature in an organic microcavity composed of a melt-grown anthracene single crystal sandwiched between two dielectric mirrors. Polaritons in organic semiconductors are highly stable at room temperature, but so far nonlinear emission from these structures has not been demonstrated. Here, polariton lasing at room temperature in an organic microcavity composed of a melt-grown anthracene single crystal sandwiched between two dielectric mirrors is reported.

735 citations

Journal ArticleDOI
TL;DR: This work presents a detailed experimental and theoretical understanding of the effect of radiation pressure on microcavities, and reports direct scanning probe spectroscopy of the micro-mechanical modes.
Abstract: The theoretical work of Braginsky predicted that radiation pressure can couple the mechanical, mirror eigenmodes of a Fabry-Perot resonator to its optical modes, leading to a parametric oscillation instability. This regime is characterized by regenerative mechanical oscillation of the mechanical mirror eigenmodes. We have recently observed the excitation of mechanical modes in an ultrahigh Q optical microcavity. Here, we present a detailed experimental analysis of this effect and demonstrate that radiation pressure is the excitation mechanism of the observed mechanical oscillations.

709 citations

Journal ArticleDOI
TL;DR: Kerr-nonlinearity induced optical parametric oscillation in a microcavity is reported for the first time, and is observed at record low threshold levels (174 micro-Watts of launched power) more than 2 orders of magnitude lower than for optical-fiber-based optical paramometric oscillation.
Abstract: Kerr-nonlinearity induced optical parametric oscillation in a microcavity is reported for the first time. Geometrical control of toroid microcavities enables a transition from stimulated Raman to optical parametric-oscillation regimes. Optical parametric oscillation is observed at record low threshold levels (174 micro-Watts of launched power) more than 2 orders of magnitude lower than for optical-fiber-based optical parametric oscillation. In addition to their microscopic size (typically tens of microns), these oscillators are wafer based, exhibit high conversion efficiency (36%), and are operating in a highly ideal "two photon" emission regime, with near-unity (0.97±0.03) idler-to-signal ratio.

699 citations


Network Information
Related Topics (5)
Quantum dot
76.7K papers, 1.9M citations
87% related
Optical fiber
167K papers, 1.8M citations
86% related
Laser
353.1K papers, 4.3M citations
86% related
Band gap
86.8K papers, 2.2M citations
84% related
Nanowire
52K papers, 1.5M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202317
202220
202152
202063
201990
201846