scispace - formally typeset
Search or ask a question
Topic

Optical performance monitoring

About: Optical performance monitoring is a research topic. Over the lifetime, 16966 publications have been published within this topic receiving 219549 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In Part I a technique based on optical orthogonal codes was presented to establish a fiber-optic code-division multiple-access (FO-CDMA) communications system and it was shown that using an optical hard-limiter would, in general, improve system performance.
Abstract: For pt.I see ibid., vol.37, no.8, p.824-33 (1989). In Part I a technique based on optical orthogonal codes was presented to establish a fiber-optic code-division multiple-access (FO-CDMA) communications system. The results are used to derive the bit error rate of the proposed FO-CDMA system as a function of data rate, code length, code weight, number of users, and receiver threshold. The performance characteristics for a variety of system parameters are discussed. A means of reducing the effective multiple-access interference signal by placing an optical hard-limiter at the front end of the desired optical correlator is presented. Performance calculations are shown for the FO-CDMA with an ideal optical hard-limiter, and it is shown that using an optical hard-limiter would, in general, improve system performance. >

925 citations

Journal ArticleDOI
22 Jun 2006-Nature
TL;DR: Net on/off gain over a wavelength range of 28 nm is demonstrated through the optical process of phase-matched four-wave mixing in suitably designed SOI channel waveguides, allowing for the implementation of dense wavelength division multiplexing in an all-silicon photonic integrated circuit.
Abstract: The development of silicon-compatible optical components that simultaneously amplify and process a broad range of wavelength channels is critical for future data communication technology based on photonic chips. Until now, such devices have only been able to amplify a single wavelength channel. Now, using nanoscale silicon waveguides designed for the purpose, Foster et al. have achieved broadband amplification. The key is the exploitation of a nonlinear optical effect known as four-wave mixing. This process can also be used for other all-optical functions previously only possible in extended lengths of optical fibre. Phase-matched four-wave mixing can take place with high efficiency in a suitably designed silicon waveguide — this advance could allow for the implementation of dense wavelength channels for optical processing in an all-silicon photonic chip. Developing an optical amplifier on silicon is essential for the success of silicon-on-insulator (SOI) photonic integrated circuits. Recently, optical gain with a 1-nm bandwidth was demonstrated using the Raman effect1,2,3,4,5,6,7,8,9, which led to the demonstration of a Raman oscillator10,11, lossless optical modulation12 and optically tunable slow light13. A key strength of optical communications is the parallelism of information transfer and processing onto multiple wavelength channels. However, the relatively narrow Raman gain bandwidth only allows for amplification or generation of a single wavelength channel. If broad gain bandwidths were to be demonstrated on silicon, then an array of wavelength channels could be generated and processed, representing a critical advance for densely integrated photonic circuits. Here we demonstrate net on/off gain over a wavelength range of 28 nm through the optical process of phase-matched four-wave mixing in suitably designed SOI channel waveguides. We also demonstrate wavelength conversion in the range 1,511–1,591 nm with peak conversion efficiencies of +5.2 dB, which represents more than 20 times improvement on previous four-wave-mixing efficiencies in SOI waveguides14,15,16,17. These advances allow for the implementation of dense wavelength division multiplexing in an all-silicon photonic integrated circuit. Additionally, all-optical delays18, all-optical switches19, optical signal regenerators20 and optical sources for quantum information technology21, all demonstrated using four-wave mixing in silica fibres, can now be transferred to the SOI platform.

923 citations

Journal ArticleDOI
N.A. Olsson1
TL;DR: In this article, the noise and bit-error-rate characteristics of fiber-optic communication systems using semiconductor laser amplifiers are investigated theoretically and experimentally, and the dependence of system performance on amplifier characteristics such as optical bandwidth, noise figure, gain, etc., is shown.
Abstract: Fiber-optic communication systems using semiconductor laser amplifiers are investigated theoretically and experimentally. The noise and bit-error-rate characteristics of lightwave systems with optical amplifiers are calculated and the dependence of system performance on amplifier characteristics such as optical bandwidth, noise figure, gain, etc., is shown. Experimental results for both a 4-Gb/s optical preamplifier as well as coherent and direct detection systems with four inline amplifiers are presented. >

899 citations

Journal ArticleDOI
TL;DR: A concept of a novel adaptation scheme in SLICE called distance-adaptive spectrum resource allocation, which can save more than 45 percent of required spectrum resources for a 12-node ring network, is presented.
Abstract: The rigid nature of current wavelength-routed optical networks brings limitations on network utilization efficiency. One limitation originates from mismatch of granularities between the client layer and the wavelength layer. The recently proposed spectrum-sliced elastic optical path network (SLICE) is expected to mitigate this problem by adaptively allocating spectral resources according to client traffic demands. This article discusses another limitation of the current optical networks associated with worst case design in terms of transmission performance. In order to address this problem, we present a concept of a novel adaptation scheme in SLICE called distance-adaptive spectrum resource allocation. In the presented scheme the minimum necessary spectral resource is adaptively allocated according to the end-to-end physical condition of an optical path. Modulation format and optical filter width are used as parameters to determine the necessary spectral resources to be allocated for an optical path. Evaluation of network utilization efficiency shows that distance-adaptive SLICE can save more than 45 percent of required spectrum resources for a 12-node ring network. Finally, we introduce the concept of a frequency slot to extend the current frequency grid standard, and discuss possible spectral resource designation schemes.

831 citations

Journal ArticleDOI
TL;DR: This paper provides a comprehensive and exhaustive survey of the state-of-the-art UOWC research in three aspects: 1) channel characterization; 2) modulation; and 3) coding techniques, together with the practical implementations of UowC.
Abstract: Underwater wireless communications refer to data transmission in unguided water environment through wireless carriers, i.e., radio-frequency (RF) wave, acoustic wave, and optical wave. In comparison to RF and acoustic counterparts, underwater optical wireless communication (UOWC) can provide a much higher transmission bandwidth and much higher data rate. Therefore, we focus, in this paper, on the UOWC that employs optical wave as the transmission carrier. In recent years, many potential applications of UOWC systems have been proposed for environmental monitoring, offshore exploration, disaster precaution, and military operations. However, UOWC systems also suffer from severe absorption and scattering introduced by underwater channels. In order to overcome these technical barriers, several new system design approaches, which are different from the conventional terrestrial free-space optical communication, have been explored in recent years. We provide a comprehensive and exhaustive survey of the state-of-the-art UOWC research in three aspects: 1) channel characterization; 2) modulation; and 3) coding techniques, together with the practical implementations of UOWC.

790 citations


Network Information
Related Topics (5)
Semiconductor laser theory
38.5K papers, 713.7K citations
91% related
Optical fiber
167K papers, 1.8M citations
90% related
Photonics
37.9K papers, 797.9K citations
87% related
Transmission (telecommunications)
171.3K papers, 1.2M citations
85% related
Photonic crystal
43.4K papers, 887K citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202319
202273
202136
202039
201942
201847