scispace - formally typeset
Topic

Optical polarization

About: Optical polarization is a(n) research topic. Over the lifetime, 13992 publication(s) have been published within this topic receiving 244284 citation(s).


Papers
More filters
Book

[...]

15 Jan 1995
TL;DR: In this article, the authors present a simulation of the optical response functions of a multilevel system with relaxation in a multimode Brownian Oscillator Model and a wavepacket analysis of nonimpulsive measurements.
Abstract: 1. Introduction 2. Quantum Dynamics in Hilbert Space 3. The Density Operator and Quantum Dynamics in Liouville Space 4. Quantum Electrodynamics, Optical Polarization, and Nonlinear Spectroscopy 5. Nonlinear Response Functions and Optical Susceptibilities 6. The Optical Response Functions of a Multilevel System with Relaxation 7. Semiclassical Simulation of the Optical Response Functions 8. The Cumulant Expansion and the Multimode Brownian Oscillator Model 9. Fluorescence, Spontaneous-Raman and Coherent-Raman Spectroscopy 10. Selective Elimination of Inhomogeneous Broadening Photon Echoes 11. Resonant Gratings, Pump-Probe, and Hole Burning Spectroscopy 12. Wavepacket Dynamics in Liouville Space The Wigner Representation 13. Wavepacket Analysis of Nonimpulsive Measurements 14. Off-Resonance Raman Scattering 15. Polarization Spectroscopy Birefringence and Dichroism 16. Nonlinear Response of Molecular Assemblies The Local-Field Approximation 17. Many Body and Cooperative Effects in the Nonlinear Response

3,897 citations

Journal ArticleDOI

[...]

TL;DR: In this paper, the non-linear optical polarization of an isolated atom or molecule is treated, giving careful consideration to secular and resonant terms in the perturbation expansion, and the Method of Averages introduced by Bogoliubov and Mitropolsky is used.
Abstract: The non-linear optical polarization of an isolated atom or molecule is treated, giving careful consideration to secular and resonant terms in the perturbation expansion. The Method of Averages introduced by Bogoliubov and Mitropolsky is used. The case where resonance-induced excited state populations are negligible, which is relevant to a wide range of non-linear optical experiments, is examined in detail for polarizations through third order in the perturbing fields. This yields concise expressions which are valid for any combination of applied field frequencies, including static fields.

1,148 citations

Journal ArticleDOI

[...]

TL;DR: In this paper, the results of a series of experiments in which a giant pulsed ruby laser is used to study several different nonlinear optical effects arising from an induced optical polarization third order in the electric field strength are presented.
Abstract: This paper presents the results of a series of experiments in which a giant pulsed ruby laser is used to study several different nonlinear optical effects arising from an induced optical polarization third order in the electric field strength. The various phenomena studied are special cases of either frequency mixing or intensity-dependent changes in the complex refractive index, including Raman laser action at a focus. A wide range of crystalline and isotropic materials was studied. The theory for these effects is extended to cover resonant interactions. The experimental results are interpreted in terms of simplified models, and quantitative values for the nonlinear polarizability coefficients are given. The rather large experimental uncertainties in these coefficients are discussed.

1,118 citations

Journal ArticleDOI

[...]

21 May 2009-Nature
TL;DR: This work shows true five-dimensional optical recording by exploiting the unique properties of the longitudinal surface plasmon resonance (SPR) of gold nanorods, which exhibits an excellent wavelength and polarization sensitivity, whereas the distinct energy threshold required for the photothermal recording mechanism provides the axial selectivity.
Abstract: In the cause of cramming more and more data onto optical storage devices, materials scientists have sought to add extra dimensions to recording media, literally. Now a group from Melbourne's Swinburne University of Technology has developed a five-dimensional optical recording technique with the potential to increase storage capacities by several orders of magnitude. The extra dimensions are the wavelength and polarization of light, which integrated with the familiar three spatial dimensions creates true five-dimensional recording within one volume. The result is a theoretical 1.6 terabytes capacity for a DVD-sized disk. The new system makes use of surface plasmon resonance (SPR)-mediated photothermal reshaping of a substrate of gold nanorods immersed in a polymer layer. Crosstalk-free readout is via two-photon luminescence. Immediate applications can be found in security patterning and multiplexed optical storage. By exploiting not only the three spatial dimensions but also other ways to record information, it is theoretically possible to store much more onto an optical device such as a DVD than has hitherto been possible. Here, a five-dimensional optical recording technique using polarization of light and its wavelength as the two additional dimensions, is demonstrated. The method consists of using a substrate of gold nanorods immersed in polymer. Multiplexed optical recording provides an unparalleled approach to increasing the information density beyond 1012 bits per cm3 (1 Tbit cm-3) by storing multiple, individually addressable patterns within the same recording volume. Although wavelength1,2,3, polarization4,5,6,7,8 and spatial dimensions9,10,11,12,13 have all been exploited for multiplexing, these approaches have never been integrated into a single technique that could ultimately increase the information capacity by orders of magnitude. The major hurdle is the lack of a suitable recording medium that is extremely selective in the domains of wavelength and polarization and in the three spatial domains, so as to provide orthogonality in all five dimensions. Here we show true five-dimensional optical recording by exploiting the unique properties of the longitudinal surface plasmon resonance (SPR) of gold nanorods. The longitudinal SPR exhibits an excellent wavelength and polarization sensitivity, whereas the distinct energy threshold required for the photothermal recording mechanism provides the axial selectivity. The recordings were detected using longitudinal SPR-mediated two-photon luminescence, which we demonstrate to possess an enhanced wavelength and angular selectivity compared to conventional linear detection mechanisms. Combined with the high cross-section of two-photon luminescence, this enabled non-destructive, crosstalk-free readout. This technique can be immediately applied to optical patterning, encryption and data storage, where higher data densities are pursued.

1,006 citations

Journal ArticleDOI

[...]

TL;DR: A detailed Raman investigation of graphene flakes with edges oriented at different crystallographic directions is presented and a real space theory for Raman scattering is developed to analyze the general case of disordered edges.
Abstract: Graphene edges are of particular interest since their orientation determines the electronic properties. Here we present a detailed Raman investigation of graphene flakes with edges oriented at different crystallographic directions. We also develop a real space theory for Raman scattering to analyze the general case of disordered edges. The position, width, and intensity of G and D peaks are studied as a function of the incident light polarization. The D-band is strongest for polarization parallel to the edge and minimum for perpendicular. Raman mapping shows that the D peak is localized in proximity of the edge. For ideal edges, the D peak is zero for zigzag orientation and large for armchair, allowing in principle the use of Raman spectroscopy as a sensitive tool for edge orientation. However, for real samples, the D to G ratio does not always show a significant dependence on edge orientation. Thus, even though edges can appear macroscopically smooth and oriented at well-defined angles, they are not necessarily microscopically ordered.

889 citations

Network Information
Related Topics (5)
Optical fiber
167K papers, 1.8M citations
92% related
Polarization (waves)
65.3K papers, 984.7K citations
89% related
Resonator
76.5K papers, 1M citations
86% related
Amplifier
163.9K papers, 1.3M citations
84% related
Laser
353.1K papers, 4.3M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20221
2021404
2020359
2019318
2018470
2017504