scispace - formally typeset
Search or ask a question
Topic

Optical polarization

About: Optical polarization is a research topic. Over the lifetime, 13992 publications have been published within this topic receiving 244284 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a polarization-sensitive optical coherence-domain reflectometer capable of characterizing the phase retardation between orthogonal linear polarization modes at each reflection point in a birefringent sample is presented.
Abstract: We present a polarization-sensitive optical coherence-domain reflectometer capable of characterizing the phase retardation between orthogonal linear polarization modes at each reflection point in a birefringent sample. The device is insensitive to the rotation of the sample in the plane perpendicular to ranging. Phase measurement accuracy is ±0.86°, but the reflectometer can distinguish local variations in birefringence as small as 0.05° with a distance resolution of 10.8 μm and a dynamic range of 90 dB. Birefringence-sensitive ranging in a wave plate, an electro-optic modulator, and a calf coronary artery is demonstrated.

621 citations

Journal ArticleDOI
TL;DR: The history of research and development related to coherent optical communications is reviewed and the principle of coherent detection is described, including its quantum-noise characteristics, which discusses the role of digital signal processing in mitigating linear transmission impairments, estimating the carrier phase, and tracking the state of polarization of the signal in coherent receivers.
Abstract: The recently developed digital coherent receiver enables us to employ a variety of spectrally efficient modulation formats such as $M$ -ary phase-shift keying and quadrature-amplitude modulation. Moreover, in the digital domain, we can equalize all linear transmission impairments such as group-velocity dispersion and polarization-mode dispersion of transmission fibers, because coherent detection preserves the phase information of the optical signal. This paper reviews the history of research and development related to coherent optical communications and describes the principle of coherent detection, including its quantum-noise characteristics. In addition, it discusses the role of digital signal processing in mitigating linear transmission impairments, estimating the carrier phase, and tracking the state of polarization of the signal in coherent receivers.

618 citations

Journal ArticleDOI
TL;DR: With a combination of discrete-dipole approximation calculations and single-nanoparticle spectroscopy, the effect of nanostructure aspect ratio and corner sharpness on the frequency of plasmon resonance is explored.
Abstract: Silver nanobars with rectangular side facets and an average aspect ratio of 2.7 have been synthesized by modifying the concentration of bromide added to a polyol synthesis. Subsequent rounding of nanobars transformed them into nanorice. Due to their anisotropy, nanobars and nanorice exhibit two plasmon resonance peaks, scattering light both in the visible and in the near-infrared regions. With a combination of discrete-dipole approximation calculations and single-nanoparticle spectroscopy, we explored the effect of nanostructure aspect ratio and corner sharpness on the frequency of plasmon resonance. Near-field calculations and surface-enhanced Raman scattering measurements on single particles were performed to show how local field enhancement changes with both the wavelength and polarization of incident light.

598 citations

Journal ArticleDOI
TL;DR: In this article, the classification of high-birefringent and low-birrringent fibers and their fabrication methods and characteristics are discussed in Section II and Section III, respectively.
Abstract: Polarization-maintaining fibers and their applications are reviewed. The classification of high-birefringent fibers and low-birefringent fibers and their fabrication methods and characteristics are discussed in Section II. Analytical methods and numerical methods for fiber design on the birefringence are presented in Section III. Degradation factors of polarization maintenance expressed as crosstalk or mode-coupling parameters caused by internal origins such as structural imperfections, wavelength, and nonlinear effects, and by external origins such as temperature fluctuations, mechanical perturbations, and electromagnetic effects, are discussed in Section IV. Characterization methods on beat length, mode coupling, stress distribution, and mechanical strength are presented in Section V. Applications to the fiber devices and nonlinear effects, and splicing methods for the polarization-maintaining fibers are described in Sections VI and VII.

593 citations

Journal ArticleDOI
TL;DR: In this paper, the 3D theory of laser cutting is presented and the cutting efficiency determined by its ultimate parameters at different types of polarization is estimated, and the physical reasons for limitations of ultimate cutting parameters at a plane P-polarized beam are displayed.
Abstract: The three-dimensional (3D) theory of laser cutting is presented. The cutting efficiency determined by its ultimate parameters at different types of polarization is estimated. The physical reasons for limitations of ultimate cutting parameters at a plane P-polarized beam are displayed. In the case of cutting metals with a large ratio of sheet thickness to width of the cut, the laser cutting efficiency for a radially polarized beam is 1.5 - 2 times larger than for plane P-polarized and circularly polarized beams. The possibility of generating the radially polarized beam is discussed.

583 citations


Network Information
Related Topics (5)
Optical fiber
167K papers, 1.8M citations
92% related
Polarization (waves)
65.3K papers, 984.7K citations
89% related
Resonator
76.5K papers, 1M citations
86% related
Amplifier
163.9K papers, 1.3M citations
84% related
Laser
353.1K papers, 4.3M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20221
2021404
2020359
2019318
2018470
2017504