scispace - formally typeset
Search or ask a question
Topic

Optical stretcher

About: Optical stretcher is a research topic. Over the lifetime, 142 publications have been published within this topic receiving 19192 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Optical trapping of dielectric particles by a single-beam gradient force trap was demonstrated for the first reported time, confirming the concept of negative light pressure due to the gradient force.
Abstract: Optical trapping of dielectric particles by a single-beam gradient force trap was demonstrated for the first reported time. This confirms the concept of negative light pressure due to the gradient force. Trapping was observed over the entire range of particle size from 10 μm to ~25 nm in water. Use of the new trap extends the size range of macroscopic particles accessible to optical trapping and manipulation well into the Rayleigh size regime. Application of this trapping principle to atom trapping is considered.

6,434 citations

Journal ArticleDOI
Arthur Ashkin1
TL;DR: In this paper, it is hypothesized that similar acceleration and trapping are possible with atoms and molecules using laser light tuned to specific optical transitions, and the implications for isotope separation and other applications of physical interest are discussed.
Abstract: Micron-sized particles have been accelerated and trapped in stable optical potential wells using only the force of radiation pressure from a continuous laser. It is hypothesized that similar accelerations and trapping are possible with atoms and molecules using laser light tuned to specific optical transitions. The implications for isotope separation and other applications of physical interest are discussed.

4,516 citations

Journal ArticleDOI
01 Dec 1987-Nature
TL;DR: The use of infrared (IR) light is used to make much improved laser traps with significantly less optical damage to a variety of living cells, and new manipulative techniques using IR light are capable of producing large forces under damage-free conditions and improve the prospects for wider use of optical manipulation techniques in microbiology.
Abstract: Use of optical traps for the manipulation of biological particles was recently proposed, and initial observations of laser trapping of bacteria and viruses with visible argon-laser light were reported. We report here the use of infrared (IR) light to make much improved laser traps with significantly less optical damage to a variety of living cells. Using IR light we have observed the reproduction of Escherichia coli within optical traps at power levels sufficient to give manipulation at velocities up to approximately 500 micron s-1. Reproduction of yeast cells by budding was also achieved in IR traps capable of manipulating individual cells and clumps of cells at velocities of approximately micron s-1. Damage-free trapping and manipulation of suspensions of red blood cells of humans and of organelles located within individual living cells of spirogyra was also achieved, largely as a result of the reduced absorption of haemoglobin and chlorophyll in the IR. Trapping of many types of small protozoa and manipulation of organelles within protozoa is also possible. The manipulative capabilities of optical techniques were exploited in experiments showing separation of individual bacteria from one sample and their introduction into another sample. Optical orientation of individual bacterial cells in space was also achieved using a pair of laser-beam traps. These new manipulative techniques using IR light are capable of producing large forces under damage-free conditions and improve the prospects for wider use of optical manipulation techniques in microbiology.

2,201 citations

Journal ArticleDOI
Arthur Ashkin1
TL;DR: It is shown that good trapping requires high convergence beams from a high numerical aperture objective and a comparison is given of traps made using bright field or differential interference contrast optics and phase contrast optics.

1,609 citations

Journal ArticleDOI
TL;DR: It is found that optical deformability is sensitive enough to monitor the subtle changes during the progression of mouse fibroblasts and human breast epithelial cells from normal to cancerous and even metastatic state, and suggests using optical deformable as an inherent cell marker for basic cell biological investigation and diagnosis of disease.

1,352 citations


Network Information
Related Topics (5)
Optical fiber
167K papers, 1.8M citations
76% related
Plasmon
32.5K papers, 983.9K citations
75% related
Laser
353.1K papers, 4.3M citations
72% related
Raman scattering
38.4K papers, 902.6K citations
70% related
Resonator
76.5K papers, 1M citations
70% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20221
20196
20183
20176
20166
20158