scispace - formally typeset
Search or ask a question
Topic

Optical switch

About: Optical switch is a research topic. Over the lifetime, 28538 publications have been published within this topic receiving 351176 citations.


Papers
More filters
Patent
23 Mar 2001
TL;DR: In this paper, the authors present an embodiment that uses rotating elements attached to rotatable flexure disposed along an axis and coupled to the comb fingers with a biasing element coupled to a rotating element causing the rotating element to undergo a controlled angular displacement from the initial engagement and in response to feedback from sensing the position of the movable or rotating element.
Abstract: Optical switches based on combdriven MEMs rotating devices (700) including actuators and position sensors. The present invention includes an embodiment that uses rotating elements attached to rotatable flexure (711) disposed along an axis and coupled to the comb fingers (702, 712) with a biasing element coupled to the rotating element causing the rotating element to undergo a controlled angular displacement from the initial engagement and in response to feedback (780) from sensing the position of the movable or rotating element (720). A voltage applied between comb fingers may cause the rotating element to undergo further rotation about the axis in a predetermined manner to deflect and switch an optical signal. The switches of the present invention can be employed with prior-art staggered combdrives and single layer self-aligned combdriven devices.

68 citations

Journal ArticleDOI
TL;DR: In this article, the structural and optical properties of ZnO thin films were investigated by using pulsed laser deposition technique on quartz substrates, and the results indicated that the substrate temperature strongly affected nonlinear optical properties and the values of third order nonlinear susceptibilities were found to be high enough for the potential applications in the optical switching devices.

68 citations

Journal Article
TL;DR: The comparison to porphyrin-sensitized carbon nanotube FETs allows the environment- and molecule-dependent photoconversion process to be distinguished from the charge-to-current transducing effect of the semiconducting channel.
Abstract: We study porphyrin derivative coated silicon nanowire field effect transistors (SiNW-FETs), which display a large, stable, and reproducible conductance increase upon illumination. The efficiency and the kinetics of the optical switching are studied as a function of gate voltage, illumination wavelength, and temperature. The decay kinetics from the high- to the low-conductance state is governed by charge recombination via tunneling, with a rate depending on the state of the SiNW-FET. The comparison to porphyrin-sensitized carbon nanotube FETs allows the environment- and molecule-dependent photoconversion process to be distinguished from the charge-to-current transducing effect of the semiconducting channel.

68 citations

Journal ArticleDOI
TL;DR: Results show that, for a 18-node network supporting an average traffic of 75 Gbits/s between each node pair, a number of wavelengths equal to 80 can drastically reduce the power consumption of optical links.
Abstract: In this paper, the power consumption of a transparent circuit-switched wavelength-division multiplexing (WDM) optical network is evaluated, considering client flow protection requirements and the daily traffic variability. Moreover, a simple heuristic algorithm is applied to the considered network scenario to reduce the power consumption of optical links. When traffic load decreases, the algorithm tries to switch off optical links according to several heuristic criteria that take into account the power consumption parameter of links, some topological consideration and the congestion of each fiber. By performing such an optimization, applying the best link-ordering criterion, it is possible to save an amount of power from 28% up to 86% of the power consumed by optical links on the basis of the traffic load. This leads to an average energy saving of 35% with respect to the energy consumed by the whole optical network. Moreover, we evaluate the impact of network design parameters on the proposed algorithm and the network power consumption. Results show that, for a 18-node network supporting an average traffic of 75 Gbits/s between each node pair, a number of wavelengths equal to 80 can drastically reduce the power consumption of optical links.

68 citations

01 Dec 1989
TL;DR: The authors discuss digital optics, a technology for processing, transport, and storage of optical digital information, which offers both the high temporal bandwidth of fiber communications and the high connectivity and information density of optical imaging.
Abstract: The authors discuss digital optics, a technology for processing, transport, and storage of optical digital information. Digital optics offers both the high temporal bandwidth of fiber communications and the high connectivity and information density of optical imaging. The energy dissipation per bit of communicated information, as well as the chip area dedicated to interconnections, can be significantly lower in optics than in high-speed electronics. This motivates the introduction of parallel optical interconnections through free space in communication-intensive areas of digital information processing such as switching in telecommunications and within multiprocessors. Digital optical circuits can be constructed by cascading two-dimensional planar arrays of optical logic gates interconnected in free space. The state of the art and the trends in digital optical information processing systems for optical logic, optoelectronic interfaces, and optical free-space interconnection systems are reviewed. >

68 citations


Network Information
Related Topics (5)
Optical fiber
167K papers, 1.8M citations
93% related
Photonics
37.9K papers, 797.9K citations
92% related
Photonic crystal
43.4K papers, 887K citations
91% related
Resonator
76.5K papers, 1M citations
87% related
Transmission (telecommunications)
171.3K papers, 1.2M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202395
2022282
2021383
2020557
2019624
2018665