scispace - formally typeset
Search or ask a question
Topic

Optical switch

About: Optical switch is a research topic. Over the lifetime, 28538 publications have been published within this topic receiving 351176 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, an error-free and pattern-independent wavelength conversion at 160 Gb/s was demonstrated using an optical bandpass filter (OBF) placed at the amplifier output.
Abstract: Error-free and pattern-independent wavelength conversion at 160 Gb/s is demonstrated. The wavelength converter utilizes a semiconductor optical amplifier (SOA) with a recovery time greater than 90 ps and an optical bandpass filter (OBF) placed at the amplifier output. This paper shows that an OBF with a central wavelength that is blue shifted compared to the central wavelength of the converted signal shortens the recovery time of the wavelength converter to 3 ps. The wavelength converter is constructed by using commercially available fiber-pigtailed components. It has a simple configuration and allows photonic integration.

214 citations

Journal ArticleDOI
TL;DR: In this paper, the authors synthesized Ge-As-Se and Ge-S-Se chalcogenide glasses with optical nonlinearities greater than 500 times that of fused silica and figures of merit for all-optical switching >5 at 1.25 and 1.55 /spl mu/m.
Abstract: We have synthesized Ge-As-Se and Ge-As-S-Se chalcogenide glasses designed to have large optical nonlinearities. Measurements reveal that these glasses offer optical Kerr nonlinearities greater than 500 times that of fused silica and figures of merit for all-optical switching >5 at 1.25 and 1.55 /spl mu/m.

213 citations

Journal ArticleDOI
01 Dec 1997
TL;DR: In this paper, the basic principles of optical transmission in fiber and reviews the current state of the art in optical device technology are discussed, and various optical components can be incorporated into WDM optical networks for both local and wide-area applications.
Abstract: Recently, there has been growing interest in developing optical fiber networks to support the increasing bandwidth demands of multimedia applications, such as video conferencing and World Wide Web browsing. One technique for accessing the huge bandwidth available in an optical fiber is wavelength-division multiplexing (WDM). Under WDM, the optical fiber bandwidth is divided into a number of nonoverlapping wavelength bands, each of which may be accessed at peak electronic rates by an end user. By utilizing WDM in optical networks, we can achieve link capacities on the order of 50 THz. The success of WDM networks depends heavily on the available optical device technology. This paper is intended as a tutorial on some of the optical device issues in WDM networks. It discusses the basic principles of optical transmission in fiber and reviews the current state of the art in optical device technology. It introduces some of the basic components in WDM networks, discusses various implementations of these components, and provides insights into their capabilities and limitations. Then, this paper demonstrates how various optical components can be incorporated into WDM optical networks for both local and wide-area applications. Finally, the paper provides a brief review of experimental WDM networks that have been implemented.

213 citations

Journal ArticleDOI
TL;DR: In this article, a plasmonic metasurface with two Fano resonances was used to enhance the interaction of infrared light with single layer graphene, and it was shown that such an electrically controllable spectral shift, combined with the narrow spectral width of the Fano resonance, enables reflectivity modulation by nearly an order of magnitude.
Abstract: Graphene has emerged as a promising optoelectronic material because its optical properties can be rapidly and dramatically changed using electric gating. Graphene’s weak optical response, especially in the infrared part of the spectrum, remains the key challenge to developing practical graphene-based optical devices such as modulators, infrared detectors, and tunable reflect-arrays. Here it is experimentally and theoretically demonstrated that a plasmonic metasurface with two Fano resonances can dramatically enhance the interaction of infrared light with single layer graphene. Graphene’s plasmonic response in the Pauli blocking regime is shown to cause strong spectral shifts of the Fano resonances without inducing additional nonradiative losses. It is shown that such electrically controllable spectral shift, combined with the narrow spectral width of the metasurface’s Fano resonances, enables reflectivity modulation by nearly an order of magnitude. We also demonstrate that metasurface-based enhancement of...

212 citations

Journal ArticleDOI
TL;DR: The proposed all-optical switching structure based on a subwavelength metallic grating structure containing nonlinear optical materials shows great advantages of smaller size, lower requirement of pump light intensity, and shorter switching time at approximately the picosecond level.
Abstract: All-optical switching based on a subwavelength metallic grating structure containing nonlinear optical materials has been proposed and numerically investigated. Metal-dielectric composite material is used in the switching for its larger third-order nonlinear susceptibility (approximately 10(-7)esu) and ultrafast response properties. The calculated dependence of the signal light intensity on the pump light intensity shows a bistable behavior, which results in a significant switch effect. It rests on a surface plasmon's enhanced intensity-dependent change of the effective dielectric constant of Kerr nonlinear media, corresponding to a transition of the far-field transmission from a low- to high-transmission state. The study of this switching structure shows great advantages of smaller size, lower requirement of pump light intensity, and shorter switching time at approximately the picosecond level.

211 citations


Network Information
Related Topics (5)
Optical fiber
167K papers, 1.8M citations
93% related
Photonics
37.9K papers, 797.9K citations
92% related
Photonic crystal
43.4K papers, 887K citations
91% related
Resonator
76.5K papers, 1M citations
87% related
Transmission (telecommunications)
171.3K papers, 1.2M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202395
2022282
2021383
2020557
2019624
2018665