scispace - formally typeset
Search or ask a question

Showing papers on "Optimized Link State Routing Protocol published in 2010"


Book
01 Jan 2010
TL;DR: In this article, the authors present a model for wireless ad-hoc networks with a view of 4G wireless: Imperatives and challenges. But the authors do not discuss the security aspects of ad hoc networks.
Abstract: Contributors.Preface.1. Mobile Ad-Hoc networking with a View of 4G Wireless: Imperatives and Challenges (J. Liu & I. Chlamtac).2. Off-the-Shelf Enables of Ad Hoc Networks (G. Zaruba & S. Das).3. IEEE 802.11 in Ad Hoc Networks: Protocols, Performance and Open Issues (G. Anastasi, et al.).4. Scatternet Formation in Bluetooth Networks (S. Basagni, et al.).5. Antenna Beamforming and Power Control for Ad Hoc Networks (R. Ramanathan).6. Topology Control in Wireless Ad Hoc Networks (X. Li).7. Broadcasting and Activity Scheduling in Ad Hoc Networks (I. Stojmenovic & J. Wu).8. Location Discovery (A. Savvidesn & M. Srivastava).9. Mobile Ad Hoc Networks (MANETs): Routing Technology for Dynamic, Wireless Networking (J. Macker & M. Corson).10. Routing Approaches in Mobile Ad Hoc Networks (E. Belding-Royer).11. Energy-Efficient Communication in Ad Hoc Wireless Networks (L. Feeney).12. Ad Hoc Networks Security (P. Michiardi & R. Molva).13. Self-Organized and Cooperative Ad Hoc Networking (S. Giordano & A. Urpi).14. Simulation and Modeling of Wireless, Mobile, and Ad Hoc Networks (A. Boukerche & L. Bononi).15. Modeling Cross-Layering Interaction Using Inverse Optimization (V. Syrotiuk & A.Bikki).16. Algorithmic Challenges in Ad Hoc Networks (A. Farago).Index.About the Editors.

757 citations


Book ChapterDOI
01 Jan 2010
TL;DR: The chapter discusses the advantages and disadvantages of these routing protocols, explores the motivation behind their design and trace the evolution of these protocols, and points out some open issues and possible direction of future research related to VANET routing.
Abstract: The chapter provides a survey of routing protocols in vehicular ad hoc networks. The routing protocols fall into two major categories of topology-based and position-based routing. The chapter discusses the advantages and disadvantages of these routing protocols, explores the motivation behind their design and trace the evolution of these routing protocols. Finally, it concludes the chapter by pointing out some open issues and possible direction of future research related to VANET routing. INTRODUCTION With the sharp increase of vehicles on roads in the recent years, driving has not stopped from being more challenging and dangerous. Roads are saturated, safety distance and reasonable speeds are hardly respected, and drivers often lack enough attention. Without a clear signal of improvement in the near future, leading car manufacturers decided to jointly work with national government agencies to develop solutions aimed at helping drivers on the roads by anticipating hazardous events or avoiding bad traffic areas. One of the outcomes has been a novel type of wireless access called Wireless Access for Vehicular Environment (WAVE) dedicated to vehicle-to-vehicle and vehicle-to-roadside communications. While the major objective has clearly been to improve the overall safety of vehicular traffic, promising traffic management solutions and on-board entertainment applications are also expected by the different bodies (C2CCC, VII, CALM) and projects (VICS (Yamada, 1996), CarTALK 2000 (Reichardt D, 2002), NOW, CarNet (Morris R, 2000), FleetNet (Franz, 2001)) involved in this field. When equipped with WAVE communication devices, cars and roadside units form a highly dynamic network called a Vehicular Ad Hoc Network (VANET), a special kind of Mobile AdHoc Networks (MANETs). While safety applications mostly need local broadcast connectivity, it is expected that some emerging scenarios (Lee, 2009) developed for intelligent transportation systems (ITS) would benefit from unicast communication over a multi-hop connectivity. Moreover, it is conceivable that applications that deliver contents and disseminate useful information can flourish with the support of multi-hop connectivity in VANETs. Although countless numbers of routing protocols (Mauve, 2001; Mehran, 2004) have been developed in MANETs, many do not apply well to VANETs. VANETs represent a particularly challenging class of MANETs. They are distributed, self-organizing communication networks formed by moving vehicles, and are thus characterized by very high node mobility and limited degrees of freedom in mobility patterns. As shown in Figure 1, there are two categories of routing protocols: topology-based and geographic routing. Topology-based routing uses the information about links that exist in the network to perform packet forwarding. Geographic routing uses neighboring location information to perform packet forwarding. Since link information changes in a regular basis, topology-based routing suffers from routing route breaks. Car 2 Car Communication Consortium, http://www.car‐to‐car.org The Vehicle Infrastructure Integration (VII) Initiative, http://www.vehicle‐infrastructure.org Continuous Air Interface for Long and Medium Interface (CALM), http://www.calm.hu Vehicle Information and Communication System Network On Wheels, www.network‐on‐wheels.de Figure 1: Taxonomy of Various Routing Protocols in VANET Despite many surveys already published on routing protocols in MANETs (Mauve, 2001; Mehran, 2004Giordano, 2003; Stojemnovic, 2004), a survey of newly developed routing protocols specific to VANETs has long been overdue. Li et al. (2007) have made an effort to introduce VANET routing protocols, yet there is still deficiency in a thorough and comprehensive treatment on this subject. A discussion of VANET topics and applications is incomplete without detailed coverage of relevant routing protocols and their impact on overall VANET architecture. In this book chapter, we seek to provide the missing building blocks by detailing the advances in VANET routing protocols. Section III describes the VANET architecture and its characteristics. Section IV presents a survey of these protocols experimented on or tailored to VANET and their advantages and disadvantages. It will explore the motivation behind their design and trace the evolution of these routing protocols. Finally, Section V will point out some open issues and possible direction of future research, and then conclude the book chapter.

362 citations


01 Jan 2010
TL;DR: This research paper provides an overview of several routing protocols for mobile ad hoc networks by presenting their characteristics, functionality, benefits and limitations and then makes their comparative analysis so to analyze their performance.
Abstract: Mobile Ad Hoc Network (MANET) is collection of multi-hop wireless mobile nodes that communicate with each other without centralized control or established infrastructure. The wireless links in this network are highly error prone and can go down frequently due to mobility of nodes, interference and less infrastructure. Therefore, routing in MANET is a critical task due to highly dynamic environment. In recent years, several routing protocols have been proposed for mobile ad hoc networks and prominent among them are DSR, AODV and TORA. This research paper provides an overview of these protocols by presenting their characteristics, functionality, benefits and limitations and then makes their comparative analysis so to analyze their performance. The objective is to make observations about how the performance of these protocols can be improved.

334 citations


Journal ArticleDOI
TL;DR: This paper is a survey of trust based protocols and it proposes some new techniques on trust management in MANETs, a Collection of mobile nodes connected with wireless links.
Abstract: Mobile Ad Hoc Network (MANETs) is a Collection of mobile nodes connected with wireless links. MANET has no fixed topology as the nodes are moving constantly form one place to another place. All the nodes must co-operate with each other in order to route the packets. Cooperating nodes must trust each other. In defining and managing trust in a military MANET, we must consider the interactions between the composite cognitive, social, information and communication networks, and take into account the severe resource constraints (e.g., computing power, energy, bandwidth, time), and dynamics (e.g., topology changes, mobility, node failure, propagation channel conditions). Therefore trust is important word which affects the performance of MANET. There are several protocols proposed based on the trust. This paper is a survey of trust based protocols and it proposes some new techniques on trust management in MANETs.

284 citations


Book
20 Oct 2010
TL;DR: The Handbook of Mobile Ad Hoc Networks for Mobility Models as discussed by the authors introduces 40 major mobility models along with numerous associate mobility models to be used in a variety of MANET networking environments in the ground, air, space, and/or under water mobile vehicles and handheld devices.
Abstract: The Mobile Ad Hoc Network (MANET) has emerged as the next frontier for wireless communications networking in both the military and commercial arena. Handbook of Mobile Ad Hoc Networks for Mobility Models introduces 40 different major mobility models along with numerous associate mobility models to be used in a variety of MANET networking environments in the ground, air, space, and/or under water mobile vehicles and/or handheld devices. These vehicles include cars, armors, ships, under-sea vehicles, manned and unmanned airborne vehicles, spacecrafts and more. This handbook also describes how each mobility pattern affects the MANET performance from physical to application layer; such as throughput capacity, delay, jitter, packet loss and packet delivery ratio, longevity of route, route overhead, reliability, and survivability. Case studies, examples, and exercises are provided throughout the book. Handbook of Mobile Ad Hoc Networks for Mobility Models is for advanced-level students and researchers concentrating on electrical engineering and computer science within wireless technology. Industry professionals working in the areas of mobile ad hoc networks, communications engineering, military establishments engaged in communications engineering, equipment manufacturers who are designing radios, mobile wireless routers, wireless local area networks, and mobile ad hoc network equipment will find this book useful as well.

269 citations


Journal ArticleDOI
TL;DR: It is observed that carry-and-forward is the new and key consideration for designing all routing protocols in VANETs, and min-delay and delay-bounded routing protocols for VANets are discussed.
Abstract: Vehicular Ad hoc Network (VANET), a subclass of mobile ad hoc networks (MANETs), is a promising approach for the intelligent transportation system (ITS). The design of routing protocols in VANETs is important and necessary issue for support the smart ITS. The key difference of VANET and MANET is the special mobility pattern and rapidly changeable topology. It is not effectively applied the existing routing protocols of MANETs into VANETs. In this investigation, we mainly survey new routing results in VANET. We introduce unicast protocol, multicast protocol, geocast protocol, mobicast protocol, and broadcast protocol. It is observed that carry-and-forward is the new and key consideration for designing all routing protocols in VANETs. With the consideration of multi-hop forwarding and carry-and-forward techniques, min-delay and delay-bounded routing protocols for VANETs are discussed in VANETs. Besides, the temporary network fragmentation problem and the broadcast storm problem are further considered for designing routing protocols in VANETs. The temporary network fragmentation problem caused by rapidly changeable topology influence on the performance of data transmissions. The broadcast storm problem seriously affects the successful rate of message delivery in VANETs. The key challenge is to overcome these problems to provide routing protocols with the low communication delay, the low communication overhead, and the low time complexity. The challenges and perspectives of routing protocols for VANETs are finally discussed.

243 citations


Journal ArticleDOI
TL;DR: This paper first breaks up existing routing strategies into a small number of common and tunable routing modules, and shows how and when a given routing module should be used, depending on the set of network characteristics exhibited by the wireless application.
Abstract: Communication networks, whether they are wired or wireless, have traditionally been assumed to be connected at least most of the time. However, emerging applications such as emergency response, special operations, smart environments, VANETs, etc. coupled with node heterogeneity and volatile links (e.g. due to wireless propagation phenomena and node mobility) will likely change the typical conditions under which networks operate. In fact, in such scenarios, networks may be mostly disconnected, i.e., most of the time, end-to-end paths connecting every node pair do not exist. To cope with frequent, long-lived disconnections, opportunistic routing techniques have been proposed in which, at every hop, a node decides whether it should forward or store-and-carry a message. Despite a growing number of such proposals, there still exists little consensus on the most suitable routing algorithm(s) in this context. One of the reasons is the large diversity of emerging wireless applications and networks exhibiting such "episodic" connectivity. These networks often have very different characteristics and requirements, making it very difficult, if not impossible, to design a routing solution that fits all. In this paper, we first break up existing routing strategies into a small number of common and tunable routing modules (e.g. message replication, coding, etc.), and then show how and when a given routing module should be used, depending on the set of network characteristics exhibited by the wireless application. We further attempt to create a taxonomy for intermittently connected networks. We try to identify generic network characteristics that are relevant to the routing process (e.g., network density, node heterogeneity, mobility patterns) and dissect different "challenged" wireless networks or applications based on these characteristics. Our goal is to identify a set of useful design guidelines that will enable one to choose an appropriate routing protocol for the application or network in hand. Finally, to demonstrate the utility of our approach, we take up some case studies of challenged wireless networks, and validate some of our routing design principles using simulations.

232 citations


Journal ArticleDOI
TL;DR: A cross-layer opportunistic spectrum access and dynamic routing algorithm for cognitive radio networks, which is called the routing and dynamic spectrum-allocation (ROSA) algorithm, which aims to maximize the network throughput by performing joint routing, dynamic spectrum allocation, scheduling, and transmit power control.
Abstract: Throughput maximization is one of the main challenges in cognitive radio ad hoc networks, where the availability of local spectrum resources may change from time to time and hop by hop. For this reason, a cross-layer opportunistic spectrum access and dynamic routing algorithm for cognitive radio networks is proposed, which is called the routing and dynamic spectrum-allocation (ROSA) algorithm. Through local control actions, ROSA aims to maximize the network throughput by performing joint routing, dynamic spectrum allocation, scheduling, and transmit power control. Specifically, the algorithm dynamically allocates spectrum resources to maximize the capacity of links without generating harmful interference to other users while guaranteeing a bounded bit error rate (BER) for the receiver. In addition, the algorithm aims to maximize the weighted sum of differential backlogs to stabilize the system by giving priority to higher capacity links with a high differential backlog. The proposed algorithm is distributed, computationally efficient, and has bounded BER guarantees. ROSA is shown through numerical model-based evaluation and discrete-event packet-level simulations to outperform baseline solutions, leading to a high throughput, low delay, and fair bandwidth allocation.

232 citations


Proceedings ArticleDOI
24 Sep 2010
TL;DR: This paper argues that mobile networks can be made more effective and efficient through Named Data Networking (NDN) (aka CCN), which defeats conventional routing protocols, originally designed for wired networks.
Abstract: The design of the Internet protocol stack, with IP at the waist of the hourglass, mandates that packet delivery is governed by the destination IP address. This design has enabled explosive growth of the wired Internet, but faces two basic issues when applied to mobile environments. First, many mobile networks, such as mobile ad-hoc networks, are infrastructure-free, while Internet protocols are generally built with infrastructure support in mind (e.g., DHCP servers to handle IP address assignments). Second, node mobility introduces a high degree of dynamics in node interconnectivity, which defeats conventional routing protocols, originally designed for wired networks. In this paper, we argue that mobile networks can be made more effective and efficient through Named Data Networking (NDN) [4] (aka CCN).

212 citations


Journal ArticleDOI
01 Jan 2010
TL;DR: The experimental results show that these immigrants and memory-based GAs can quickly adapt to environmental changes and produce high-quality solutions after each change and this paper considers MANETs as target systems because they represent new-generation wireless networks.
Abstract: In recent years, the static shortest path (SP) problem has been well addressed using intelligent optimization techniques, e.g., artificial neural networks, genetic algorithms (GAs), particle swarm optimization, etc. However, with the advancement in wireless communications, more and more mobile wireless networks appear, e.g., mobile networks [mobile ad hoc networks (MANETs)], wireless sensor networks, etc. One of the most important characteristics in mobile wireless networks is the topology dynamics, i.e., the network topology changes over time due to energy conservation or node mobility. Therefore, the SP routing problem in MANETs turns out to be a dynamic optimization problem. In this paper, we propose to use GAs with immigrants and memory schemes to solve the dynamic SP routing problem in MANETs. We consider MANETs as target systems because they represent new-generation wireless networks. The experimental results show that these immigrants and memory-based GAs can quickly adapt to environmental changes (i.e., the network topology changes) and produce high-quality solutions after each change.

202 citations


Patent
19 Jan 2010
TL;DR: In this article, the authors present a virtual protocol interlayer between the link and network layers for routing packets by nodes in an ad hoc network in accordance with a link quality source routing protocol.
Abstract: Systems and methods for routing packets by nodes in an ad hoc network in accordance with a link quality source routing protocol are disclosed. Route discovery, route maintenance, and metric maintenance are designed to propagate and keep current link quality measurements. Metric maintenance includes a reactive approach for links that a node is currently using to route packets, and a proactive mechanism for all links. Nodes are configured to include a send buffer, a maintenance buffer, a request table, link quality metric modules, and preferably a neighbor cache and a link cache. The invention allows for asymmetric links in the network. The invention may be implemented within a virtual protocol interlayer between the link and network layers. The invention may employ any particular link quality metrics, including metrics based on probing techniques as well as metrics based on knowledge gained in other ways.

Proceedings ArticleDOI
20 Jun 2010
TL;DR: This paper compares Mobile Ad-Hoc network routing protocols DSDV, AODV and DSR using network simulator NS2.34 and the performance matrix includes PDR, Throughput, End to End Delay, Routing overhead.
Abstract: Mobile Ad-Hoc networks are highly dynamic networks characterized by the absence of physical infrastructure. Nodes of these networks functions as a routers which discovers and maintains the routes to other nodes in the network. In such networks, nodes are able to move and synchronize with their neighbors. Due to mobility, connections in the network can change dynamically and nodes can be added and removed at any time. In this paper, we are going to compare Mobile Ad-Hoc network routing protocols DSDV, AODV and DSR using network simulator NS2.34. We have compared the performance of three protocols together and individually too. The performance matrix includes PDR (Packet Delivery Ratio), Throughput, End to End Delay, Routing overhead. We are comparing the performance of routing protocols when packet size changes, when time interval between packet sending changes, when mobility of nodes changes.

Proceedings Article
18 Oct 2010
TL;DR: The authors examine various technologies that may aid ad hoc networking including the presence of an ability to tune transmission power levels or the deployment of sophisticated smart antennae.
Abstract: AD HOC NETWORKS: Technologies and Protocols is a concise in-depth treatment of various constituent components of ad hoc network protocols. It reviews issues related to medium access control, scalable routing, group communications, use of directional/smart antennas, network security, and power management among other topics. The authors examine various technologies that may aid ad hoc networking including the presence of an ability to tune transmission power levels or the deployment of sophisticated smart antennae. Contributors to this volume include experts that have been active in ad hoc network research and have published in the premier conferences and journals in this subject area. AD HOC NETWORKS: Protocols and Technologies will be immensely useful as a reference work to engineers and researchers as well as to advanced level students in the areas of wireless networks, and computer networks.

Journal ArticleDOI
TL;DR: This paper proposes a distributed Prediction-based Cognitive Topology Control scheme to provision cognition capability to routing in CR-MANETs and constructs an efficient and reliable topology, which is aimed at mitigating re-routing frequency and improving end-to-end network performance such as throughput and delay.
Abstract: Recent research activities on cognitive radio (CR) have mainly focussed on opportunistic spectrum access and spectrum utilization. However, CR technology will have a significant impact on upper layer performance in wireless networks, particularly in mobile ad hoc networks (MANETs). In this paper, we study topology control and routing issues in CR-MANETs and propose a distributed prediction-based cognitive topology control (PCTC) scheme to provision cognition capability to routing in CR-MANETs. PCTC is a middleware-like cross-layer module residing between CR module and routing. It uses cognitive link availability prediction, which is aware of the interference to primary users and user mobility, to predict the available duration of links. Based on the link prediction, PCTC captures the dynamic changes of the topology and constructs an efficient and reliable topology, which is aimed at mitigating rerouting frequency and improving end-to-end network performance such as throughput and delay. Simulation results are presented to show the effectiveness of the proposed scheme.

Journal ArticleDOI
Xin Li1, Zhiping Jia1, Peng Zhang1, Ruihua Zhang1, Haiyang Wang1 
TL;DR: A trust-based reactive multipath routing protocol, ad hoc on-demand trusted-path distance vector (AOTDV), is proposed for MANETs and the results show that AotDV improves packet delivery ratio and mitigates the impairment from black hole, grey hole and modification attacks.
Abstract: A mobile ad hoc network (MANET) is a self-organised system comprised of mobile wireless nodes. All nodes act as both communicators and routers. Owing to multi-hop routing and absence of centralised administration in open environment, MANETs are vulnerable to attacks by malicious nodes. In order to decrease the hazards from malicious nodes, the authors incorporate the concept of trust to MANETs and build a simple trust model to evaluate neighbours’ behaviours – forwarding packets. Extended from the ad hoc on-demand distance vector (AODV) routing protocol and the ad hoc on-demand multipath distance vector (AOMDV) routing protocol, a trust-based reactive multipath routing protocol, ad hoc on-demand trusted-path distance vector (AOTDV), is proposed for MANETs. This protocol is able to discover multiple loop-free paths as candidates in one route discovery. These paths are evaluated by two aspects: hop counts and trust values. This two-dimensional evaluation provides a flexible and feasible approach to choose the shortest path from the candidates that meet the requirements of data packets for dependability or trust. Furthermore, the authors give a routing example in details to describe the procedures of route discovery and the differences among AODV, AOMDV and AOTDV. Several experiments have been conducted to compare these protocols and the results show that AOTDV improves packet delivery ratio and mitigates the impairment from black hole, grey hole and modification attacks.

Journal ArticleDOI
Qing Yang1, Alvin Lim1, Shuang Li1, Jian Fang1, Prathima Agrawal1 
TL;DR: The proposed ACAR protocol outperforms existing VANET routing protocols in terms of data delivery ratio, throughput and data packet delay, and the model is not constrained by network densities, making it suitable for both daytime and nighttime city VANet scenarios.
Abstract: Multi-hop vehicle-to-vehicle communication is useful for supporting many vehicular applications that provide drivers with safety and convenience. Developing multi-hop communication in vehicular ad hoc networks (VANET) is a challenging problem due to the rapidly changing topology and frequent network disconnections, which cause failure or inefficiency in traditional ad hoc routing protocols. We propose an adaptive connectivity aware routing (ACAR) protocol that addresses these problems by adaptively selecting an optimal route with the best network transmission quality based on statistical and real-time density data that are gathered through an on-the-fly density collection process. The protocol consists of two parts: 1) select an optimal route, consisting of road segments, with the best estimated transmission quality, and 2) in each road segment of the chosen route, select the most efficient multi-hop path that will improve the delivery ratio and throughput. The optimal route is selected using our transmission quality model that takes into account vehicle densities and traffic light periods to estimate the probability of network connectivity and data delivery ratio for transmitting packets. Our simulation results show that the proposed ACAR protocol outperforms existing VANET routing protocols in terms of data delivery ratio, throughput and data packet delay. Since the proposed model is not constrained by network densities, the ACAR protocol is suitable for both daytime and nighttime city VANET scenarios.

Journal ArticleDOI
TL;DR: This research investigates distributed clustering scheme and proposes a cluster-based routing protocol for Delay-Tolerant Mobile Networks (DTMNs), showing that it achieves higher delivery ratio and significantly lower overhead and end-to-end delay compared with its non-clustering counterpart.
Abstract: This research investigates distributed clustering scheme and proposes a cluster-based routing protocol for Delay-Tolerant Mobile Networks (DTMNs). The basic idea is to distributively group mobile nodes with similar mobility pattern into a cluster, which can then interchangeably share their resources (such as buffer space) for overhead reduction and load balancing, aiming to achieve efficient and scalable routing in DTMN. Due to the lack of continuous communications among mobile nodes and possible errors in the estimation of nodal contact probability, convergence and stability become major challenges in distributed clustering in DTMN. To this end, an exponentially weighted moving average (EWMA) scheme is employed for on-line updating nodal contact probability, with its mean proven to converge to the true contact probability. Based on nodal contact probabilities, a set of functions including Sync(), Leave(), and Join() are devised for cluster formation and gateway selection. Finally, the gateway nodes exchange network information and perform routing. Extensive simulations are carried out to evaluate the effectiveness and efficiency of the proposed cluster-based routing protocol. The simulation results show that it achieves higher delivery ratio and significantly lower overhead and end-to-end delay compared with its non-clustering counterpart.

Dissertation
15 Dec 2010
TL;DR: A new quality link metric, Interference and Bandwidth Adjusted ETX (IBETX) is proposed and implemented, keeping in view the issues of WMhNs, increasing demands of users and capabilities of routing protocols, and it succeeds to reduce average end-to-end delay up to 16% less than Expected Link Performance (ELP) and 24% lessthan ETX.
Abstract: This dissertation endeavors to contribute enhancements in goodputsof the IEEE 802.11-based Wireless Multi-hop Networks (WMhNs).By performing exhaustive simulations, for the deep analysis and detailed assessment of both reactive (AODV, DSR, DYMO) and proactive (DSDV, FSR, OLSR) protocols for varying mobilities, speeds, network loads and scalabilities, it is observed that a routing link metric is a significant component of a routing protocol. In addition to finding all available paths, the fastest end-to-end route is selected by a link metric for the routing protocol. This study aims the quality routing. In the class of quality link metrics, Expected Transmission Count (ETX) is extensively used. Thus, the most recently proposed ETX-based metrics have been analyzed. Though, newly developed metrics over perform ETX but still they can be improved. By profound analysis and particularized comparison of routing protocols depending upon their classes (reactive and proactive) and ETX-based metrics, we come to realize that users always demand proficient networks. In fact, WMhNs are facing several troubles which they expect to be resolved by the routing protocol operating them. Consequently, the protocol depends upon the link metric for providing quality paths. So, we identify and analyze the requirements to design a new routing link metric for WMhNs. Because, considering these requirements, when a link metric is proposed, then : firstly, both the design and implementation of the link metric with a routing protocol become easy. Secondly, the underlying network issues can easily be tackled. Thirdly, an appreciable performance of the network is guaranteed. Keeping in view the issues of WMhNs, increasing demands of users and capabilities of routing protocols, we propose and implement a new quality link metric, Interference and Bandwidth Adjusted ETX (IBETX). As, MAC layer affects the link performance and consequently the route quality, the metric therefore, tackles the issue by achieving twofold MAC-awareness. Firstly, interference is calculated using cross-layered approach by sending probes to MAC layer. Secondly, the nominal bit rate information is provided to all nodes in the same contention domain by considering the bandwidth sharing mechanism of 802.11. Like ETX, our metric also calculates link delivery ratios that directly affect throughput and selects those routes that bypass dense regions in the network. Simulation results by NS-2 show that IBETX gives 19% higher through put than ETX and 10% higher than Expected Throughput (ETP). Our metric also succeeds to reduce average end-to-end delay up to 16% less than Expected Link Performance (ELP) and 24% less than ETX

01 Jan 2010
TL;DR: This paper is a survey of active research work on routing protocols for MANET, an autonomously self-organized networks without infrastructure support that may experience rapid and unpredictable topology changes.
Abstract: Mobile ad hoc networks (MANETs) are autonomously self-organized networks without infrastructure support. In a mobile ad hoc network, nodes move arbitrarily; therefore the network may experience rapid and unpredictable topology changes. Because nodes in a MANET normally have limited transmission ranges, some nodes cannot communicate directly with each other. Hence, routing paths in mobile ad hoc networks potentially contain multiple hops, and every node in mobile ad hoc networks has the responsibility to act as a router. This paper is a survey of active research work on routing protocols for MANET.

Proceedings ArticleDOI
24 Apr 2010
TL;DR: A new routing protocol for VANET is designed based on the former results, called CBR (Cluster Based Routing), which has obvious improvement in the average routing overhead and small average end to end delay jitter with the increase of vehicles number.
Abstract: With the development of vehicles and mobile Ad Hoc network technology, the Vehicle Ad hoc Network (VANET) has become an emerging field of study It is a challenging problem for searching and maintaining an effective route for transporting some data information In this paper the authors designed a new routing protocol for VANET based on the former results, called CBR (Cluster Based Routing) Compared with other routing protocols, the new one has obvious improvement in the average routing overhead and small average end to end delay jitter with the increase of vehicles number The real-time traffic applications require data transmission delay time to be relatively stable, small average end to end delay jitter with the increase of vehicles number just meets the real-time application needs

Proceedings ArticleDOI
13 Apr 2010
TL;DR: This paper reviews some of the state-of-the-art and widely investigated MANET routing strategies in the literature and a performance comparison of discussed routing protocol strategies is provided and suggestions are made to achieve improvement in performance of these protocols.
Abstract: Mobile Ad Hoc Networks (MANETs) are generating a lot of interests due to 3G and 4G activities. The dynamic nature of these networks demands new set of network routing strategy protocols to be implemented in order to provide efficient end-to-end communication. Due to the diverse applications that use MANETs, such as battlefield, emergency services, and disaster discovery, MANETs offer many advantages to many organizations that need wireless roaming. For efficient and timely use, routing and synchronization are essential. Both are hot research topics in MANETs. This paper concentrates on routing, which is a challenging task and has seen a huge number of different strategies proposed, each claiming to provide an improvement over other strategies. These competing strategies make it quite difficult to determine which one may perform optimally under a number of different sets of network conditions as defined by their Quality of Service (QoS) offerings. This paper reviews some of the state-of-the-art and widely investigated MANET routing strategies in the literature. Moreover, a performance comparison of discussed routing protocol strategies is provided and suggestions are made to achieve improvement in performance of these protocols. This research is followed by presenting further research that will be pursued to define a radically most optimum set of strategies to satisfy different types of application domains.

Proceedings ArticleDOI
15 Mar 2010
TL;DR: This work designs a routing scheme for cognitive radio Ad Hoc networks, named Gymkhana, which is aware of the degree of connectivity of possible paths towards the destination, and uses Laplacian matrixes to derive a closed formula to measure the path connectivity.
Abstract: The topology of a cognitive radio Ad Hoc network is highly influenced by the behavior of both licensed (primary) and unlicensed (secondary) users. In fact, the network connectivity could be impaired by the activity of primary users. This aspect has a significant impact on the design of routing protocols. We design a routing scheme for cognitive radio Ad Hoc networks, named Gymkhana, which is aware of the degree of connectivity of possible paths towards the destination. Gymkhana routes the information across paths that avoid network zones that do not guarantee stable and high connectivity. To this aim we use a mathematical framework, based on the Laplacian spectrum of graphs, that allows a comprehensive evaluation of the different routing paths of the cognitive radio network. Laplacian matrixes are used to compute the connectivity of the different network paths. Gymkhana uses a distributed protocol to collect some key parameters related to candidate paths from an origin to a destination. The parameters are fed into a basic mathematical structure which is used to compute efficient routing paths. Besides the basic idea of Gymkhana, the use of Laplacian matrixes to derive a closed formula to measure the path connectivity is another contribution of ours.

Journal ArticleDOI
TL;DR: A formal operational semantics of the @w-calculus is given in terms of labeled transition systems and it is proved that the state reachability problem is decidable for finite-control @w -processes and that late bisimulation equivalence is a congruence.

Journal ArticleDOI
TL;DR: This article presents a survey of ad hoc networking protocols that have used concepts such as centrality metrics and community formation from the area of social network analysis, which is seen as a network measurement task that deals with structural properties of the network graph.
Abstract: This article presents a survey of ad hoc networking protocols that have used concepts such as centrality metrics and community formation from the area of social network analysis, which is seen as a network measurement task that deals with structural properties of the network graph. We recognize the synergy among social network analysis and ad hoc networking as a fertile research area that can provide significant advances for the design of network protocols, especially in environments where the communication is opportunistic in nature and therefore cannot be easily or efficiently described as an optimization problem, and other systematic approaches like cross-layer optimization are more difficult to apply.

Journal ArticleDOI
TL;DR: This paper identifies typical building blocks of swarm intelligence systems and shows how they are used to solve routing problems and presents Ant Colony Routing, a general framework in which most swarm intelligence routing algorithms can be placed.
Abstract: In the past few years, there has been much research on the application of swarm intelligence to the problem of adaptive routing in telecommunications networks. A large number of algorithms have been proposed for different types of networks, including wired networks and wireless ad hoc networks. In this paper, we give an overview of this research area. We address both the principles underlying the research and the practical applications that have been proposed. We start by giving a detailed description of the challenges in this problem domain, and we investigate how swarm intelligence can be used to address them. We identify typical building blocks of swarm intelligence systems and we show how they are used to solve routing problems. Then, we present Ant Colony Routing, a general framework in which most swarm intelligence routing algorithms can be placed. After that, we give an extensive overview of existing algorithms, discussing for each of them their contributions and their relative place in this research area. We conclude with an overview of future research directions that we consider important for the further development of this field.

Journal ArticleDOI
TL;DR: A novel cluster-based trust-aware routing protocol for MANETs to protect forwarded packets from intermediary malicious nodes and ensures the trustworthiness of cluster-heads by replacing them as soon as they become malicious and can dynamically update the packet path to avoid malicious routes.
Abstract: Routing protocols are the binding force in mobile ad hoc network (MANETs) since they facilitate communication beyond the wireless transmission range of the nodes. However, the infrastructure-less, pervasive, and distributed nature of MANETs renders them vulnerable to security threats. In this paper, we propose a novel cluster-based trust-aware routing protocol (CBTRP) for MANETs to protect forwarded packets from intermediary malicious nodes. The proposed protocol organizes the network into one-hop disjoint clusters then elects the most qualified and trustworthy nodes to play the role of cluster-heads that are responsible for handling all the routing activities. The proposed CBTRP continuously ensures the trustworthiness of cluster-heads by replacing them as soon as they become malicious and can dynamically update the packet path to avoid malicious routes. We have implemented and simulated the proposed protocol then evaluated its performance compared to the clustered based routing protocol (CBRP) as well as the 2ACK approach. Comparisons and analysis have shown the effectiveness of our proposed scheme.

01 Jan 2010
TL;DR: Some basic security concerns in MANET are addressed, operation of wormhole attack and securing the wellknown routing protocol Ad-hoc On Demand Distance Vector are addressed.
Abstract: Summary: In this era of wireless devices, Mobile Ad-hoc Network (MANET) has become an indivisible part for communication for mobile devices. Therefore, interest in research of Mobile Ad-hoc Network has been growing since last few years. In this paper we have discussed some basic routing protocols in MANET like Destination Sequenced Distance Vector, Dynamic Source Routing, Temporally-Ordered Routing Algorithm and Ad-hoc On Demand Distance Vector. Security is a big issue in MANETs as they are infrastructure-less and autonomous. Main objective of writing this paper is to address some basic security concerns in MANET, operation of wormhole attack and securing the wellknown routing protocol Ad-hoc On Demand Distance Vector. This article would be a great help for the people conducting research on real world problems in MANET security.

Journal ArticleDOI
TL;DR: A framework for the optimal control of delay tolerant mobile ad hoc networks where multiple classes of nodes co-exist and two product forms are adopted to model message diffusion and it is shown that optimal controls are of bang-bang type.

Book ChapterDOI
31 Aug 2010
TL;DR: A complete picture of the decidability boundaries of decision problems for parameterized verification of a formal model of Ad Hoc Networks with selective broadcast and spontaneous movement according to different assumptions on communication graphs, namely static, mobile, and bounded path topology is drawn.
Abstract: We study decision problems for parameterized verification of a formal model of Ad Hoc Networks with selective broadcast and spontaneous movement. The communication topology of a network is represented as a graph. Nodes represent states of individual processes. Adjacent nodes represent single-hop neighbors. Processes are finite state automata that communicate via selective broadcast messages. Reception of a broadcast is restricted to single-hop neighbors. For this model we consider verification problems that can be expressed as reachability of configurations with one node (resp. all nodes) in a certain state from an initial configuration with an arbitrary number of nodes and unknown topology. We draw a complete picture of the decidability boundaries of these problems according to different assumptions on communication graphs, namely static, mobile, and bounded path topology.

Journal ArticleDOI
01 Jun 2010
TL;DR: This work presents a new mechanism called DARWIN (Distributed and Adaptive Reputation mechanism for Wireless ad hoc Networks), where it is proved that this mechanism is robust to imperfect measurements, is collusion-resistant and can achieve full cooperation among nodes.
Abstract: In wireless ad hoc networks one way to incentivize nodes to forward other nodes' packets is through the use of reputation mechanisms, where cooperation is induced by the threat of partial or total network disconnection if a node acts selfishly. The problem is that packet collisions and interference may make cooperative nodes appear selfish sometimes, generating unnecessary and unwanted punishments. With the use of a simple network model we first study the performance of some proposed reputation strategies and then present a new mechanism called DARWIN (Distributed and Adaptive Reputation mechanism for Wireless ad hoc Networks), where we try to avoid retaliation situations after a node is falsely perceived as selfish to help restore cooperation quickly. Using game theory, we prove that our mechanism is robust to imperfect measurements, is collusion-resistant and can achieve full cooperation among nodes. Simulations are presented to complement our theoretical analysis and evaluate the performance of our algorithm compared to other proposed reputation strategies.