scispace - formally typeset
Search or ask a question
Topic

Optimized Link State Routing Protocol

About: Optimized Link State Routing Protocol is a research topic. Over the lifetime, 26258 publications have been published within this topic receiving 641506 citations. The topic is also known as: OSLR & OLSR.


Papers
More filters
Journal Article
TL;DR: In this article, the authors proposed a geographical adaptive fidelity (GAF) algorithm that reduces energy consumption in ad hoc wireless networks by identifying nodes that are equivalent from a routing perspective and turning off unnecessary nodes, keeping a constant level of routing fidelity.
Abstract: We introduce a geographical adaptive fidelity (GAF) algorithm that reduces energy consumption in ad hoc wireless networks. GAF conserves energy by identifying nodes that are equivalent from a routing perspective and turning off unnecessary nodes, keeping a constant level of routing fidelity. GAF moderates this policy using application- and system-level information; nodes that source or sink data remain on and intermediate nodes monitor and balance energy use. GAF is independent of the underlying ad hoc routing protocol; we simulate GAF over unmodified AODV and DSR. Analysis and simulation studies of GAF show that it can consume 40% to 60% less energy than an unmodified ad hoc routing protocol. Moreover, simulations of GAF suggest that network lifetime increases proportionally to node density; in one example, a four-fold increase in node density leads to network lifetime increase for 3 to 6 times (depending on the mobility pattern). More generally, GAF is an example of adaptive fidelity, a technique proposed for extending the lifetime of self-configuring systems by exploiting redundancy to conserve energy while maintaining application fidelity.

2,829 citations

Journal ArticleDOI
TL;DR: The per-session throughput for applications with loose delay constraints, such that the topology changes over the time-scale of packet delivery, can be increased dramatically under this assumption, and a form of multiuser diversity via packet relaying is exploited.
Abstract: The capacity of ad hoc wireless networks is constrained by the mutual interference of concurrent transmissions between nodes. We study a model of an ad hoc network where n nodes communicate in random source-destination pairs. These nodes are assumed to be mobile. We examine the per-session throughput for applications with loose delay constraints, such that the topology changes over the time-scale of packet delivery. Under this assumption, the per-user throughput can increase dramatically when nodes are mobile rather than fixed. This improvement can be achieved by exploiting a form of multiuser diversity via packet relaying.

2,736 citations

Proceedings ArticleDOI
22 Aug 2005
TL;DR: A new routing scheme, called Spray and Wait, that "sprays" a number of copies into the network, and then "waits" till one of these nodes meets the destination, which outperforms all existing schemes with respect to both average message delivery delay and number of transmissions per message delivered.
Abstract: Intermittently connected mobile networks are sparse wireless networks where most of the time there does not exist a complete path from the source to the destination. These networks fall into the general category of Delay Tolerant Networks. There are many real networks that follow this paradigm, for example, wildlife tracking sensor networks, military networks, inter-planetary networks, etc. In this context, conventional routing schemes would fail.To deal with such networks researchers have suggested to use flooding-based routing schemes. While flooding-based schemes have a high probability of delivery, they waste a lot of energy and suffer from severe contention, which can significantly degrade their performance. Furthermore, proposed efforts to significantly reduce the overhead of flooding-based schemes have often be plagued by large delays. With this in mind, we introduce a new routing scheme, called Spray and Wait, that "sprays" a number of copies into the network, and then "waits" till one of these nodes meets the destination.Using theory and simulations we show that Spray and Wait outperforms all existing schemes with respect to both average message delivery delay and number of transmissions per message delivered; its overall performance is close to the optimal scheme. Furthermore, it is highly scalable retaining good performance under a large range of scenarios, unlike other schemes. Finally, it is simple to implement and to optimize in order to achieve given performance goals in practice.

2,712 citations

Journal ArticleDOI
TL;DR: This article takes advantage of the inherent redundancy in ad hoc networks-multiple routes between nodes-to defend routing against denial-of-service attacks and uses replication and new cryptographic schemes to build a highly secure and highly available key management service, which terms the core of this security framework.
Abstract: Ad hoc networks are a new wireless networking paradigm for mobile hosts. Unlike traditional mobile wireless networks, ad hoc networks do not rely on any fixed infrastructure. Instead, hosts rely on each other to keep the network connected. Military tactical and other security-sensitive operations are still the main applications of ad hoc networks, although there is a trend to adopt ad hoc networks for commercial uses due to their unique properties. One main challenge in the design of these networks is their vulnerability to security attacks. In this article, we study the threats on ad hoc network faces and the security goals to be achieved. We identify the new challenges and opportunities posed by this new networking environment and explore new approaches to secure its communication. In particular, we take advantage of the inherent redundancy in ad hoc networks-multiple routes between nodes-to defend routing against denial-of-service attacks. We also use replication and new cryptographic schemes, such as threshold cryptography, to build a highly secure and highly available key management service, which terms the core of our security framework.

2,661 citations

Proceedings ArticleDOI
16 Jul 2001
TL;DR: A geographical adaptive fidelity algorithm that reduces energy consumption in ad hoc wireless networks by identifying nodes that are equivalent from a routing perspective and then turning off unnecessary nodes, keeping a constant level of routing fidelity.
Abstract: We introduce a geographical adaptive fidelity (GAF) algorithm that reduces energy consumption in ad hoc wireless networks GAF conserves energy by identifying nodes that are equivalent from a routing perspective and then turning off unnecessary nodes, keeping a constant level of routing fidelity GAF moderates this policy using application- and system-level information; nodes that source or sink data remain on and intermediate nodes monitor and balance energy use GAF is independent of the underlying ad hoc routing protocol; we simulate GAF over unmodified AODV and DSR Analysis and simulation studies of GAF show that it can consume 40% to 60% less energy than an unmodified ad hoc routing protocol Moreover, simulations of GAP suggest that network lifetime increases proportionally to node density; in one example, a four-fold increase in node density leads to network lifetime increase for 3 to 6 times (depending on the mobility pattern) More generally, GAF is an example of adaptive fidelity, a technique proposed for extending the lifetime of self-configuring systems by exploiting redundancy to conserve energy while maintaining application fidelity

2,638 citations


Network Information
Related Topics (5)
Wireless ad hoc network
49K papers, 1.1M citations
96% related
Key distribution in wireless sensor networks
59.2K papers, 1.2M citations
94% related
Wireless network
122.5K papers, 2.1M citations
94% related
Wireless sensor network
142K papers, 2.4M citations
93% related
Network packet
159.7K papers, 2.2M citations
93% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202388
2022250
202176
2020117
2019123
2018190