scispace - formally typeset
Search or ask a question
Topic

Organic farming

About: Organic farming is a research topic. Over the lifetime, 7254 publications have been published within this topic receiving 138030 citations. The topic is also known as: pertanian organik & organic farming.


Papers
More filters
Journal ArticleDOI
TL;DR: Organically and biodynamically managed soils had similar microbial status and were more biotically active than soils that did not receive organic fertilization, but additional use of the biodynamic preparations did not significantly affect the soil biotic parameters tested.
Abstract: Biodynamic agriculture is a unique organic farming system that utilizes, in addition to the common tools of organic agriculture, specific fermented herbal preparations as compost additives and field sprays. The objective of this work was to determine whether biodynamic compost or field spray preparations affect the soil biological community in the short term, beyond the effects of organic management. Four fertilizer options: (i) composted dairy manure and bedding (organic fertilization), (ii) the same material composted with biodynamic compost preparations, (iii) mineral fertilizers, and (iv) no fertilizer were investigated with and without the biodynamic field spray preparations. Both biodynamic and nonbiodynamic composts increased soil microbial biomass, respiration, dehydrogenase activity, soil C mineralized in 10 d (MinC), earthworm (Lumbricus terrestris) population and biomass, and metabolic quotient of respiration per unit biomass (qCO 2 ) by the second year of study. No significant differences were found between soils fertilized with biodynamic vs. nonbiodynamic compost. Use of biodynamic field sprays was associated with more MinC and minor differences in soil microbial fatty acid profiles in the first year of study. There were no other observed effects of the biodynamic preparations. Organically and biodynamically managed soils had similar microbial status and were more biotically active than soils that did not receive organic fertilization. Organic management enhanced soil biological activity, but additional use of the biodynamic preparations did not significantly affect the soil biotic parameters tested.

262 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the effect of farming practice on butterfly species richness and abundance along cereal field headlands and margins on 12 matched pairs of organic and conventional farms in contrasting landscapes (homogeneous and heterogeneous landscape diversity).
Abstract: The recent dramatic decline in farmland biodiversity is often attributed to agricultural intensification and structural changes in the agricultural landscape. One suggested farm practice seen to benefit biodiversity and reverse declines is organic farming. Because organic farming is viewed as a more sustainable form of agriculture it is currently subsidized by European agri-environment schemes. However, the efficiency of agri-environment schemes to preserve biodiversity has recently been questioned, partly because their uptake has been highest in extensively farmed more heterogeneous landscapes. We investigated the effect of farming practice on butterfly species richness and abundance along cereal field headlands and margins on 12 matched pairs of organic and conventional farms in contrasting landscapes (homogeneous and heterogeneous landscape diversity). Both organic farming and landscape heterogeneity significantly increased butterfly species richness and abundance. There was also a significant interaction between farming practice and landscape heterogeneity, because organic farming only significantly increased butterfly species richness and abundance in homogeneous rather than heterogeneous landscapes. An analysis of the distribution of organic farming in Sweden in relation to productivity of the arable land (yield of spring barley, kg ha(-1)) indicated that the distribution of organic farms was skewed towards extensively farmed agricultural areas. Synthesis and applications. The species richness and abundance of butterflies can be enhanced by actions aimed at both promoting organic farming and increasing landscape heterogeneity. However, the beneficial effect of organic farming was only evident in intensively farmed homogeneous landscapes. Currently, the majority of organic arable land in Sweden is located in heterogeneous landscapes where changing the type of farming practice adds little to the existing biodiversity. We therefore propose that the interaction between landscape heterogeneity and farming practice must be considered when promoting farmland biodiversity, for example in Europe by developing context-based agri-environment schemes to increase the amount of organic farming in intensively farmed landscapes. We also propose that in homogeneous agricultural landscapes, organic farming could be used as a more efficient tool to restore landscape heterogeneity if the creation of semi-natural landscape elements was mandatory in the regulations associated with organic agri-environment schemes. (Less)

254 citations

Journal ArticleDOI
TL;DR: Soil organic matter (SOM) is a non-living product of the decomposition of plant and animal substances as mentioned in this paper and it is used as an indicator of fertility and land degradation.

251 citations

Journal ArticleDOI
TL;DR: In this article, opportunities to improve nitrogen-use efficiency in cropping and farming systems are analyzed and discussed, and it is concluded that N supply should match N demand in time and space, not only for single crops but for a crop rotation as an integrated system, in order to achieve a higher agronomic Nuse efficiency.
Abstract: The impact of modern agriculture on natural resources has become a major global concern. Population growth and expanding demand for agricultural products constantly increase the pressure on land and water resources. A major point of concern for many intensively managed agricultural systems with high external inputs is the low resource-use efficiency, especially for nitrogen. A high input combined with a low efficiency ultimately results in environmental problems such as soil degradation, eutrophication, pollution of groundwater, and emission of ammonia and greenhouse gases. Evidently, there is a need for a transition of current agricultural systems into highly resource-use efficient systems that are profitable, but at the same time ecologically safe and socially acceptable. Here, opportunities to improve nitrogen-use efficiency in cropping and farming systems are analyzed and discussed. In the past and present, increased productivity of the major plant production systems has been derived from genetic improvement, and from greater use of external inputs such as energy, fertilizers, pesticides and irrigation water. Aiming at improving resource-use efficiencies, in high-input systems the focus should be on more yield with less fertilizer N. In low-input systems additional use of N fertilizer may be required to increase yield level and yield stability. Developing production systems that meet the goals of sustainable agriculture requires research on different scales, from single crops to diverse cropping and farming systems. It is concluded that N supply should match N demand in time and space, not only for single crops but for a crop rotation as an integrated system, in order to achieve a higher agronomic N-use efficiency. A combination of quantitative systems research, development of best practices and legislation will be needed to develop more environmentally-friendly agricultural systems. The growing complexity of managing N in sustainable agricultural systems calls for problem-oriented, interdisciplinary research.

248 citations

Journal ArticleDOI
TL;DR: In this paper, the authors examined how the species richness and abundance of wild plants, ground beetles and breeding birds, and the biological control potential of the area, were affected by organic and conventional farming, and how these effects were modified by landscape complexity.
Abstract: 1. Organic farming in Europe has been shown to enhance biodiversity locally, but potential interactions with the surrounding landscape and the potential effects on ecosystem services are less well known. 2. In cereal fields on 153 farms in five European regions, we examined how the species richness and abundance of wild plants, ground beetles and breeding birds, and the biological control potential of the area, were affected by organic and conventional farming, and how these effects were modified by landscape complexity (percentage of arable crops within 1000 m of the study plots). Information on biodiversity was gathered from vegetation plots, pitfall traps and by bird territory mapping. The biological control potential was measured as the percentage of glued, live aphids removed from plastic labels exposed in cereal fields for 24 h. 3. Predation on aphids was highest in organic fields in complex landscapes, and declined with increasing landscape homogeneity. The biological control potential in conventional fields was not affected by landscape complexity, and in homogenous landscapes it was higher in conventional fields than in organic fields, as indicated by an interaction between farming practice and landscape complexity. 4. A simplification of the landscape, from 20% to 100% arable land, reduced plant species richness by about 16% and cover by 14% in organic fields, and 33% and 5·5% in conventional fields. For birds, landscape simplification reduced species richness and abundance by 34% and 32% in organic fields and by 45·5% and 39% in conventional fields. Ground beetles were more abundant in simple landscapes, but were unaffected by farming practice. 5. Synthesis and applications. This Europe-wide study shows that organic farming enhanced the biodiversity of plants and birds in all landscapes, but only improved the potential for biological control in heterogeneous landscapes. These mixed results stress the importance of taking both local management and regional landscape complexity into consideration when developing future agri-environment schemes, and suggest that local-regional interactions may affect other ecosystem services and functions. This study also shows that it is not enough to design and monitor agri-environment schemes on the basis of biodiversity, but that ecosystem services should be considered too.

242 citations


Network Information
Related Topics (5)
Agriculture
80.8K papers, 1.3M citations
87% related
Soil fertility
33.7K papers, 859.4K citations
86% related
Food security
44.4K papers, 918.6K citations
82% related
Soil organic matter
39.8K papers, 1.5M citations
82% related
Soil carbon
27.3K papers, 957.4K citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023342
2022687
2021376
2020388
2019362
2018390