scispace - formally typeset
Search or ask a question
Topic

Organic farming

About: Organic farming is a research topic. Over the lifetime, 7254 publications have been published within this topic receiving 138030 citations. The topic is also known as: pertanian organik & organic farming.


Papers
More filters
Journal ArticleDOI
TL;DR: The authors' analysis points to a more energetically efficient use of cropland for food than for fuel production and large differences in efficiencies attributable to management, which suggests multiple opportunities for improvement.
Abstract: The prospect of biofuel production on a large scale has focused attention on energy efficiencies associated with different agricultural systems and production goals. We used 17 years of detailed data on agricultural practices and yields to calculate an energy balance for different cropping systems under both food and fuel scenarios. We compared four grain and one forage systems in the U.S. Midwest: corn (Zea mays) - soybean (Glycine max) - wheat (Triticum aestivum) rotations managed with (1) conventional tillage, (2) no till, (3) low chemical input, and (4) biologically based (organic) practices, and (5) continuous alfalfa (Medicago sativa). We compared energy balances under two scenarios: all harvestable biomass used for food versus all harvestable biomass used for biofuel production. Among the annual grain crops, average energy costs of farming for the different systems ranged from 4.8 GJ ha−1 y−1 for the organic system to 7.1 GJ ha−1 y−1 for the conventional; the no-till system was also low at 4.9 GJ h...

90 citations

Journal Article
TL;DR: The use of synthetic pesticides has undoubtedly resulted in achievement of green revolution in different countries through increased crop production, but in recent years there has been considerable pressure on consumers and farmers to reduce or eliminate synthetic pesticides.
Abstract: Sustainable agriculture aims at reducing the incidence of pests and diseases to such a degree that they do not seriously damage crops without upsetting nature’s balance. One of the aims of sustainable agriculture is to rediscover and develop strategies whose cost and ecological side-effects are minimal. The use of synthetic pesticides has undoubtedly resulted in achievement of green revolution in different countries through increased crop production. However, in recent years there has been considerable pressure on consumers and farmers to reduce or eliminate synthetic pesticides in agriculture. This concern has encouraged researchers to look for better alternatives to synthetic pesticides.

90 citations

Journal ArticleDOI
TL;DR: The implications of these rules for animal health, whereby we shall focus on pig, poultry and dairy production systems, are discussed in this paper, where the authors discuss the implications of the rules for animals' health.
Abstract: Organic livestock production is a means of food production with a large number of rules directed towards a high status of animal welfare, care for the environment, restricted use of medical drugs and the production of a healthy product without residues (pesticides or medical drugs). The intentions of organic livestock production have been formulated by the International Federation of Organic Agriculture Movements (IFOAM) and were further implemented by EU regulation 2092/91 in the year 2000. The consequences of these rules for the health of the animals were not yet fully anticipated at the time these regulations were made and it has become clear that in some cases the rules are not clear enough, thereby even hampering the development of the production system. In this review we shall discuss the implications of these rules for animal health, whereby we shall focus on pig, poultry and dairy production systems. Disease prevention in organic farming is based on the principles that an animal that is allowed to exhibit natural behaviour is not subject to stress, is fed optimal (organic) feed, and will have a higher ability to cope with infections than animals reared in a conventional way. Fewer medical treatments would thus be necessary and if an animal would become diseased, alternative treatments instead of conventional drugs should be preferred. Although homeopathy or phytotherapy are recommended according to prevailing regulations, not many organic farmers use this treatment regimen because of lack of scientific evidence of effectiveness. Important health problems in organic livestock farming are often related to the outdoor access area, exposing the animals to various viral, bacterial and parasitic infections some of which may only influence the animals’ own welfare whereas other ones may also endanger the health of conventional livestock (e.g. Avian Influenza) or pose a food safety (Campylobacter, Toxoplasma) problem to the consumer. Many preventive measures can be taken, such as using better animal breeds, optimized rearing conditions, pre- and probiotics, and addition of acids to the drinking water. In case of infectious disease, tight vaccination schedules may prevent serious outbreaks.

90 citations

Journal ArticleDOI
TL;DR: In this paper, the authors compared farming systems based on liquid slurry and solid farmyard manure to assess the effect of biogas digestion on the sustainability of the cropping systems in terms of N and carbon (C) budgets.
Abstract: Nitrogen (N) and carbon (C) cycles are closely linked in organic farming systems. Use of residues for biogas digestion may reduce N-losses and lead to higher farmland productivity. However, digestion is connected to large losses of organic C. It is the purpose of this paper (1) to compare farming systems based on liquid slurry and solid farmyard manure regarding the N, C and organic dry matter (ODM) inputs and flows, (2) to analyse the effect of digestion on soil N, C and ODM inputs and flows within the cropping system, (3) to assess the effects of organic manure management on biological N2 fixation (BNF), and (4) to assess the effect of biogas digestion on the sustainability of the cropping systems in terms of N and C budgets. The BNF by clover/grass-leys was the most important single N input, followed by the BNF supplied by legume cover cropping. Growth of crops in organic farming systems is very often N limited, and not limited by the soil C inputs. However, balances of N inputs showed that the implemented organic farming systems have the potential to supply high amounts of N to meet crop N demand. The level of plant available N to non-legume main crops was much lower, in comparison to the total N inputs. Reasons were the non-synchronized timing of N mineralization and crop N demand, the high unproductive gaseous N losses and an unfocussed allocation in space and time of the circulating N within the crop rotation (e.g. allocation of immobile manures to legumes or of mobile manures to cover crops). Simultaneously, organic cropping systems very often showed large C surpluses, which may be potentially increased the N shortage due to the immobilization of N. Soil organic matter supply and soil humus balance (a balance sheet calculated from factors describing the cultivation effects on humus increasing and humus depleting crops, and organic manure application) were higher in cropping systems based on liquid slurry than in those based on solid farmyard manure (+19%). Simultaneously, soil N surplus was higher due to lower gaseous N losses (+14%). Biogas digestion of slurry had only a very slight effect on both the soil N and the soil C budget. The effect on the N budget was also slight if the liquid slurry was stored in closed repositories. Digestion of residues like slurry, crop residues and cover crops reduced in a mixed farming system the soil C supply unilaterally (approximately −33%), and increased the amounts of readily available N (approximately +70–75%). The long-term challenge for organic farming systems is to find instruments that reduce N losses to a minimum, to keep the most limiting fraction of N (ammonia-N) within the system, and to enhance the direct manuring effect of the available manures to non-legume main crops.

90 citations

Journal ArticleDOI
TL;DR: A review of safe weed control methods in the clean agricultural can be found in this article, where the objectives are to start clean stay clean successful, prevention is always better than treatment, and one year's seeds will lead to seven year's weed infestation.
Abstract: Weed control is consider the major obstacle for the growers in the organic farming. Lower plant productivity in organic farming mainly related to the poor weed control. It is widely known, in most cases, that losses caused by weeds exceeded the losses from any category of agricultural pests. Under water-stress condition, weeds can reduce crop yields more than 50% through moisture competition alone. In the light of the environmental and toxicological problems created by herbicides, it has become necessary to develop the safety methods for controlling weeds. Soil Solarization, Mulching, Biodegradable Mulch, Natural Herbicides, Hot Water, and Agronomic Practices have been successfully adopted in many countries as safe methods for controlling weeds in the organic farming. In addition, there are some promising new and non-traditional measures such as Fresnel Lens, Electrical Weed Control, Lasers, etc which could be employed for controlling the weeds in organic farming. Also the agronomic practices such as choice of competitive varieties, stale seedbeds had a significant impact on weeds. The growers in organic farming should keep these three points in mind: 1) start clean stay clean successful, 2) Prevention is always better than treatment and, 3) One year's seeds will lead to seven year's weed infestation. Successful and sustainable weed management systems are those that employ combinations of techniques rather than relying on one method. The objectives of this paper are to review some safe weed control methods in the clean agricultural.

89 citations


Network Information
Related Topics (5)
Agriculture
80.8K papers, 1.3M citations
87% related
Soil fertility
33.7K papers, 859.4K citations
86% related
Food security
44.4K papers, 918.6K citations
82% related
Soil organic matter
39.8K papers, 1.5M citations
82% related
Soil carbon
27.3K papers, 957.4K citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023342
2022687
2021376
2020388
2019362
2018390