scispace - formally typeset
Search or ask a question

Showing papers on "Organic semiconductor published in 2010"


Journal ArticleDOI
TL;DR: Polariton lasing at room temperature in an organic microcavity composed of a melt-grown anthracene single crystal sandwiched between two dielectric mirrors is reported in this paper.
Abstract: The optical properties of organic semiconductors are almost exclusively described using the Frenkel exciton picture1. In this description, the strong Coulombic interaction between an excited electron and the charged vacancy it leaves behind (a hole) is automatically taken into account. If, in an optical microcavity, the exciton–photon interaction is strong compared to the excitonic and photonic decay rates, a second quasiparticle, the microcavity polariton, must be introduced to properly account for this coupling2. Coherent, laser-like emission from polaritons has been predicted to occur when the ground-state occupancy of polaritons 〈ngs〉, reaches 1 (ref. 3). This process, known as polariton lasing, can occur at thresholds much lower than required for conventional lasing. Polaritons in organic semiconductors are highly stable at room temperature, but to our knowledge, there has as yet been no report of nonlinear emission from these structures. Here, we demonstrate polariton lasing at room temperature in an organic microcavity composed of a melt-grown anthracene single crystal sandwiched between two dielectric mirrors. Polaritons in organic semiconductors are highly stable at room temperature, but so far nonlinear emission from these structures has not been demonstrated. Here, polariton lasing at room temperature in an organic microcavity composed of a melt-grown anthracene single crystal sandwiched between two dielectric mirrors is reported.

735 citations



Journal ArticleDOI
TL;DR: In this paper, the metal/organic interface is found to be key for spin injection in organic semiconductors, and the authors investigated how to optimize the injection of spin into these materials.
Abstract: Organic semiconductors are attractive candidates for spintronics applications because of their long spin lifetimes. But few studies have investigated how to optimize the injection of spin into these materials. A new study suggests that the metal/organic interface is key.

551 citations


Journal ArticleDOI
TL;DR: The concept of using a p-channel/emitter/n-channel trilayer semiconducting heterostructure in OLETs is introduced, providing a new approach to markedly improve OLET performance and address general fundamental optoelectronic and photonic issues.
Abstract: The potential of organic semiconductor-based devices for light generation is demonstrated by the commercialization of display technologies based on organic light-emitting diodes (OLEDs). Nonetheless, exciton quenching and photon loss processes still limit OLED efficiency and brightness. Organic light-emitting transistors (OLETs) are alternative light sources combining, in the same architecture, the switching mechanism of a thin-film transistor and an electroluminescent device. Thus, OLETs could open a new era in organic optoelectronics and serve as testbeds to address general fundamental optoelectronic and photonic issues. Here, we introduce the concept of using a p-channel/emitter/n-channel trilayer semiconducting heterostructure in OLETs, providing a new approach to markedly improve OLET performance and address these open questions. In this architecture, exciton-charge annihilation and electrode photon losses are prevented. Our devices are >100 times more efficient than the equivalent OLED, >2x more efficient than the optimized OLED with the same emitting layer and >10 times more efficient than any other reported OLETs.

538 citations


Journal ArticleDOI
Hikmet Najafov1, Bumsu Lee1, Q. Zhou1, Leonard C. Feldman1, Vitaly Podzorov1 
TL;DR: The findings indicate that the exciton diffusion bottleneck is not an intrinsic limitation of organic semiconductors and suggest that long-lived triplet excitons are indeed generated in molecular crystals by fission of singlets, and these triplets provide a significant contribution to the surface photocurrent generated in organic materials.
Abstract: Excitons in polycrystalline and disordered films of organic semiconductors have been shown to diffuse over distances of 10-50 nm. Here, using polarization- and wavelength-dependent photoconductivity in the highly ordered organic semiconductor rubrene, we show that the diffusion of triplet excitons in this material occurs over macroscopic distances (2-8 μm), comparable to the light absorption length. Dissociation of these excitons at the surface of the crystal is found to be the main source of photoconductivity in rubrene. In addition, we observe strong photoluminescence quenching and a simultaneous enhancement of photoconductivity when the crystal surface is functionalized with exciton splitters. In combination with time-resolved measurements, these observations strongly suggest that long-lived triplet excitons are indeed generated in molecular crystals by fission of singlets, and these triplets provide a significant contribution to the surface photocurrent generated in organic materials. Our findings indicate that the exciton diffusion bottleneck is not an intrinsic limitation of organic semiconductors.

453 citations


Journal ArticleDOI
TL;DR: The goal of this Review is primarily to discuss the thin-film formation of organic semiconducting species and the patterning of single crystals is discussed, while their nucleation and growth has been described elsewhere.
Abstract: Analogous to conventional inorganic semiconductors, the performance of organic semiconductors is directly related to their molecular packing, crystallinity, growth mode, and purity. In order to achieve the best possible performance, it is critical to understand how organic semiconductors nucleate and grow. Clever use of surface and dielectric modification chemistry can allow one to control the growth and morphology, which greatly influence the electrical properties of the organic transistor. In this Review, the nucleation and growth of organic semiconductors on dielectric surfaces is addressed. The first part of the Review concentrates on small-molecule organic semiconductors. The role of deposition conditions on film formation is described. The modification of the dielectric interface using polymers or self-assembled mono-layers and their effect on organic-semiconductor growth and performance is also discussed. The goal of this Review is primarily to discuss the thin-film formation of organic semiconducting species. The patterning of single crystals is discussed, while their nucleation and growth has been described elsewhere (see the Review by Liu et. al).([¹]) The second part of the Review focuses on polymeric semiconductors. The dependence of physico-chemical properties, such as chain length (i.e., molecular weight) of the constituting macromolecule, and the influence of small molecular species on, e.g., melting temperature, as well as routes to induce order in such macromolecules, are described.

442 citations


Journal ArticleDOI
TL;DR: It is demonstrated that the HFI does indeed have a crucial role in all three spin responses and OLED films based on the D-polymers show substantially narrower magneto-electroluminescence and ODMR responses, and OSV devices based on D- polymers show a substantially larger magnetoresistance.
Abstract: The origin of the effect that a magnetic field has on various electronic properties of organic semiconductors is still controversial. It is now shown that substituting hydrogen for deuterium in conducting polymers changes the response to a magnetic field substantially, proving the essential part played by hyperfine interaction in this effect.

406 citations


Journal ArticleDOI
TL;DR: The origin of an apparent 'band-like', negative temperature coefficient of the mobility (dmu/dT<0) in spin-coated films of 6,13-bis(triisopropylsilylethynyl)-pentacene is investigated and optical spectroscopy of gate-induced charge carriers is used to show that, at low temperature and small lateral electric field, charges become localized onto individual molecules in shallow trap states, but that a moderate lateralElectric field
Abstract: The mobility mu of solution-processed organic semiconductors has improved markedly to room-temperature values of 1-5 cm(2) V(-1) s(-1). In spite of their growing technological importance, the fundamental open question remains whether charges are localized onto individual molecules or exhibit extended-state band conduction like those in inorganic semiconductors. The high bulk mobility of 100 cm(2) V(-1) s(-1) at 10 K of some molecular single crystals provides clear evidence that extended-state conduction is possible in van-der-Waals-bonded solids at low temperatures. However, the nature of conduction at room temperature with mobilities close to the Ioffe-Regel limit remains controversial. Here we investigate the origin of an apparent 'band-like', negative temperature coefficient of the mobility (dmu/dT<0) in spin-coated films of 6,13-bis(triisopropylsilylethynyl)-pentacene. We use optical spectroscopy of gate-induced charge carriers to show that, at low temperature and small lateral electric field, charges become localized onto individual molecules in shallow trap states, but that a moderate lateral electric field is able to detrap them resulting in highly nonlinear, low-temperature transport. The negative temperature coefficient of the mobility at high fields is not due to extended-state conduction but to localized transport limited by thermal lattice fluctuations.

396 citations


Journal ArticleDOI
TL;DR: The flexible nonvolatile organic memory devices developed on the plastic substrates based on the organic thin-film transistors embedding self-assembled gold nanoparticles exhibited good programmable memory characteristics with respect to the program/erase operations, resulting in controllable and reliable threshold voltage shifts.
Abstract: The flexible nonvolatile organic memory devices were developed on the plastic substrates based on the organic thin-film transistors embedding self-assembled gold nanoparticles (Au(NP)). The organic memory devices exhibited good programmable memory characteristics with respect to the program/erase operations, resulting in controllable and reliable threshold voltage shifts. Additionally, the endurance, data retention, and bending cyclic measurements confirmed that the flexible memory devices exhibited good electrical reliability as well as mechanical stability. The memory devices were composed of the solution-processed organic dielectric layers/metallic nanoparticles and the low-temperature processed organic transistors. Therefore, this approach could potentially be applied to advanced flexible/plastic electronic devices as well as integrated organic device circuits.

358 citations


Journal ArticleDOI
TL;DR: This Account focuses on organic micro- and nanocrystals, including their design, the controllable growth of crystals, and structure-property studies, and develops new methods to fabricate high-performance devices based on the small crystals and investigate their anisotropic charge transport properties.
Abstract: Organic semiconductors have attracted wide attention in recent decades, resulting in the rapid development of organic electronics. For example, the solution processibility of organic semiconductors allows researchers to use unconventional deposition methods (such as inkjet printing and stamping) to fabricate large area devices at low cost. The mechanical properties of organic semiconductors also allow for flexible electronics. However, the most distinguishing feature of organic semiconductors is their chemical versatility, which permits the incorporation of functionalities through molecular design. However, key scientific challenges remain before organic electronics technology can advance further, including both the materials’ low charge carrier mobility and researchers’ limited knowledge of structure−property relationships in organic semiconductors. We expect that high-quality organic single crystals could overcome these challenges: their purity and long-range ordered molecular packing ensure high device...

351 citations


Journal ArticleDOI
TL;DR: There are only few examples where the packing of p-conjugated semiconductors can be controlled by means of rational design concepts to avoid the most common herringbone p-stacking motif.
Abstract: The appropriate arrangement of organic semiconductors in the solid state is decisive for efficient charge-carrier transport between source and drain electrodes in organic thin-film transistors (OTFTs). However, the still unsolved challenges in crystal engineering mean that there are only few examples where the packing of p-conjugated semiconductors can be controlled by means of rational design concepts to avoid the most common herringbone p-stacking motif (Figure 1a). An outstanding example is provided by the

Journal ArticleDOI
TL;DR: This silole-based polymer is found to form a highly functional nanomorphology when blended with [6,6]-phenyl C71-butyric acid methyl ester (C70-PCBM), and solar cells prepared using this blend gave efficiencies of 5.2%, certified by the National Renewable Energy Laboratory.
Abstract: Bulk heterojunction solar cells have attracted considerable attention over the past several years due to their potential for low-cost photovoltaic technology. The possibility of manufacturing modules via a standard printing/coating method in a roll-to-roll process in combination with the use of low-cost materials will lead to a watt-peak price of less than 1 US$ within the next few years. [1] Despite the low-cost potential, the power conversion efficiency of bulk heterojunction devices is low compared to inorganic solar cells. Efficiencies in the range of 5‐6% have been certified at NREL and AIST usually on devices with small active areas. [2] The current understanding of bulk heterojunction solar cells suggests that the maximum efficiency is in the range of 10‐12%. [3] Several reasons for the power conversion efficiency limitation have been identified. [1] Some of the prerequisites for achieving highest efficiencies are donor and acceptor materials with optimized energy levels [highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO)], efficient charge transport in the donor‐acceptor blend, efficient charge generation and limited recombination losses. Power conversion efficiency is strongly dependent on charge transport and charge generation, which are dominated by the phase behavior of the donor and acceptor molecules. The resulting, and often unfavorable, nanomorphology of this two-component blend limits the power conversion efficiency of bulk heterojunction solar cells. Precise control of the nanomorphology is very difficult and has been achieved only for a few systems. [4‐6] The relation between the chemical structure of donor and acceptor materials and the nanomorphology that they form when they are blended is currently not well understood, and as will be shown in this paper, minor changes in the chemical structure can cause major changes in the performance of the materials in organic solar cells. In this work we demonstrate the effect of replacing a carbon atom with a silicon atom on the main chain of the conjugated polymer. The approach has been used previously, and promising materials for field-effect transistors and organic solar cells have been demonstrated. [7‐9] We find that making this simple substitution in poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4b 0 ]-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT) yields a polysilole, e.g., poly[(4,4 0 -bis(2-ethylhexyl)dithieno[3,2b:2 0 ,3 0 -d]silole)-2,6-diyl-alt-(4,7-bis(2-thienyl)-2,1,3-benzothiadiazole)-5,5 0 -diyl] (Si-PCPDTBT), with a higher crystallinity, improved charge transport properties, reduced bimolecular recombination, and a reduced formation of charge transfer complexes when blended with a fullerene derivative. This silole-based polymer is found to form a highly functional nanomorphology when blended with [6,6]-phenyl C71-butyric acid methyl ester (C70-PCBM), and solar cells prepared using this blend gave efficiencies of 5.2%, certified by the National Renewable Energy Laboratory. [1] The presented polymer is the first low-bandgap semiconducting polymer to have a certified efficiency of over 5%. The chemical structure of the subject polymer is shown in Figure 1. The material was synthesized following the procedure described previously. [10] The synthesis and properties of the carbon-bridged polymer have been described before. [11,12] Figure 2a shows the absorbance and photoluminescence (PL) spectra of a thin solid film of the pristine Si-bridged polymer and

Journal ArticleDOI
TL;DR: These structures are monodisperse, well-defined, discrete molecules with 100% synthetic reproducibility, and possess high purity and excellent solubility in common organic solvents and are therefore extremely attractive alternatives to conjugated polymers.
Abstract: Strategies for the design and construction of non-linear, 2D and 3D conjugated macromolecules are presented in this critical review. The materials, termed here as star-shaped structures, feature a core unit which may or may not provide conjugated links between arms that radiate like spokes from a central axle. The arms of the macromolecules consist of linear oligomers or irregular conjugated chains lacking a formal repeat unit. The cores range from simple atoms to single or fused aromatic units and can provide a high level of symmetry to the overall structure. The physical properties of the star-shaped materials can be markedly different to their simple, linear conjugated analogues. These differences are highlighted and we report on anomalies in absorption/emission characteristics, electronic energy levels, thermal properties and morphology of thin films. We provide numerous examples for the application of star-shaped conjugated macromolecules in organic semiconductor devices; a comparison of their device performance with those comprising analogous linear systems provides clear evidence that the star-shaped compounds are an important class of material in organic electronics. Moreover, these structures are monodisperse, well-defined, discrete molecules with 100% synthetic reproducibility, and possess high purity and excellent solubility in common organic solvents. They feature many of the attributes of plastic materials (good film-forming properties, thermal stability, flexibility) and are therefore extremely attractive alternatives to conjugated polymers (210 references).

Journal ArticleDOI
TL;DR: The results indicate that large bandwidths along with small effective masses can be obtained with the insertion of appropriate substituents on the nitrogens, in particular halogenated aromatic groups.
Abstract: Perylene tetracarboxylic diimide (PTCDI) derivatives stand out as one of the most investigated families of air-stable n-type organic semiconductors for organic thin-film transistors. Here, we use density functional theory to illustrate how it is possible to control the charge-transport parameters of PTCDIs as a function of the type, number, and positions of the substituents. Specifically, two strategies of functionalization related to core and end substitutions are investigated. While end-substituted PTCDIs present the same functional molecular backbone, their molecular packing in the crystal significantly varies; as a consequence, this series of derivatives constitutes an ideal test bed to evaluate the models that describe charge-transport in organic semiconductors. Our results indicate that large bandwidths along with small effective masses can be obtained with the insertion of appropriate substituents on the nitrogens, in particular halogenated aromatic groups.

Journal ArticleDOI
TL;DR: Insight is provided into the control and ultimately the tunability of the exciton diffusion length inorganic systems, which is crucial for the management of energy transport in a wide range of important organic electronic devices.
Abstract: One of the most fundamental properties of both organic and inorganic semiconductors is charge mobility. It has been unambiguously shown that the mobility in both of these materials systems is strongly linked to the degree of long range order—thatis,moreextendedcrystallinityleadstoalargercharge mobility, which ultimately determines such extrinsic properties as seriesresistance andresponse tocurrentand optical pulses. An equally fundamental property for organic semiconductors is the molecular excited state-, or exciton-, diffusion length which characterizes energy transport within these more correlated solids. While it has been predicted that exciton transport should also be linked to the extent of crystalline order, to our knowledge nosuchdependencehasyetbeenestablished.Here,weaccurately measure the exciton diffusion length of the archetypal organic semiconductor, 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) and clearly show its relationship to thin-film crystal morphology. As in the case of charge mobility, we show that the exciton transport diffusion length is a monotonic function of the extent of crystalline order. This study provides insight into the control and ultimately the tunability of the exciton diffusion lengthinorganic systems, whichiscrucial forthemanagementof energy transport in a wide range of important organic electronic devices.

Journal ArticleDOI
TL;DR: An overview of recent advances in development of high performance organic semiconductors for field-effect transistors, especially those with mobility of/over amorphous silicon, since they are believed to be promising candidates with practical applications in the near future's organic electronic industry.

Journal ArticleDOI
TL;DR: Ambipolar organic field-effect transistors (OFETs), which are capable of both p- and n-channel operations, are gaining attention as an alternative approach to mimicking complementary metal-oxide semiconductor (CMOS) digital integrated circuits for achieving high-performance and cost-effective circuits in organic electronics.
Abstract: Ambipolar organic field-effect transistors (OFETs), which are capable of both p- and n-channel operations, are gaining attention as an alternative approach to mimicking complementary metal-oxide semiconductor (CMOS) digital integrated circuits for achieving high-performance and cost-effective circuits in organic electronics. [1‐13] Low power dissipation and high performance are some of the major advantages of CMOS technology over non-complementary ones. [14] Power consumption is minimized in CMOS circuits because the component transistors are selectively turned on only when the circuit is switching, otherwise they are off at the steady state. The better performance of a CMOS circuit in terms of sharp switching and high noise immunity arises because every elemental transistor actively contributes to the function of the circuit. [14] Most efforts towards CMOS-like circuits in organic electronics have focused on utilizing distinct p- and n-type semiconductors. [1,15] However, the necessity of lateral patterning of semiconductors in CMOS circuits makes device fabrication on a common substrate a very complex process. Ambipolar OFETs represent an approach to high-performance CMOS-like circuits that minimize patterning and complex fabrication processes. [1] Ambipolar transistors are also of interest in fundamental studies of charge transport in organic semiconductors [1,6,16] as well as the development of efficient light-emitting transistors. [8,17‐21]

Journal ArticleDOI
TL;DR: This Review summarizes recent advances in the use of organic electronic materials for the detection of environmental chemicals, pressure, and light.
Abstract: Organic semiconductor films are susceptible to noncovalent interactions, trapping and doping, photoexcitation, and dimensional deformation. While these effects can be detrimental to the performance of conventional circuits, they can be harnessed, especially in field-effect architectures, to detect chemical and physical stimuli. This Review summarizes recent advances in the use of organic electronic materials for the detection of environmental chemicals, pressure, and light. The material features that are responsible for the transduction of the input signals to electronic information are discussed in detail.

Journal ArticleDOI
TL;DR: Both the device performance and the ambient stability are among the best for n-channel OTFTs reported to date.
Abstract: A new class of n-type semiconductors for organic thin film transistors (OTFTs), based on core-expanded naphthalene diimides fused with 2-(1,3-dithiol-2-ylidene)malonitrile groups, is reported. The first two representatives of these species, derived from long branched N-alkyl chains, have been successfully used as active layers for high-performance, ambient-stable, solution-processed n-channel OTFTs. Their bottom-gate top-contact devices fabricated by spin-coating methods exhibit high electron mobilities of up to 0.51 cm(2) V(-1) s(-1) with current on/off ratios of 10(5)-10(7), and small threshold voltages below 10 V under ambient conditions. As this class of n-type organic semiconductors has relatively low-lying LUMO levels and good film-formation ability, they also displayed good environmental stability even with prolonged exposure to ambient air. Both the device performance and the ambient stability are among the best for n-channel OTFTs reported to date.

Journal ArticleDOI
TL;DR: In this article, a low bandgap solution processable diketopyrrolopyrrole (DPP) based derivatives functionalized with electron withdrawing end capping groups were synthesized, and their photophysical, electrochemical and photovoltaic properties were investigated.
Abstract: Novel low bandgap solution processable diketopyrrolopyrrole (DPP) based derivatives functionalized with electron withdrawing end capping groups (trifluoromethylphenyl and trifluorophenyl) were synthesized, and their photophysical, electrochemical and photovoltaic properties were investigated. These compounds showed optical bandgaps ranging from 1.81 to 1.94 eV and intense absorption bands that cover a wide range from 300 to 700 nm, attributed to charge transfer transition between electron rich phenylene-thienylene moieties and the electron withdrawing diketopyrrolopyrrole core. All of the compounds were found to be fluorescent in solution with an emission wavelength ranging from 600 to 800 nm. Cyclic voltammetry indicated reversible oxidation and reduction processes with tuning of HOMO–LUMO energy levels. Bulk heterojunction (BHJ) solar cells using poly(3-hexylthiophene) (P3HT) as the electron donor with these new acceptors were used for fabrication. The best power conversion efficiencies (PCE) using 1 : 2 donor–acceptor by weight mixture were 1% under simulated AM 1.5 solar irradiation of 100 mW cm−2. These findings suggested that a DPP core functionalized with electron accepting end-capping groups were a promising new class of solution processable low bandgap n-type organic semiconductors for organic solar cell applications.

Journal ArticleDOI
TL;DR: It is illustrated that the directional alignment of polymers form oriented fiber-like films, yielding one of the highest mobilities reported so far for polymer transistors.
Abstract: In this tutorial review, different film microstructures, commonly termed morphologies, into which the organic semiconductor polymers self-assemble macroscopically are presented, together with their corresponding influence on charge carrier mobility and hence transistor behaviour. It will be clarified how various chemical design approaches and solution processing methods enable the manipulation of polymer morphology, leading to improvements in transistor performance. Ultimately, it is illustrated that the directional alignment of polymers form oriented fiber-like films, yielding one of the highest mobilities reported so far for polymer transistors. Based on these observations, a prediction is made concerning which kind of morphology is expected to reach the best charge carrier mobility.

Journal ArticleDOI
TL;DR: The latest advances in the use of solution processable organic semiconductor blends for organic field effect transistor (OFET) applications are reviewed in this article, where multi-component, thin film microstructure formation from solution with particular focus on phase separation and crystallisation of components.
Abstract: The latest advances in the use of solution processable organic semiconductor blends for organic field effect transistor (OFET) applications are reviewed. We summarise multi-component, thin film microstructure formation from solution with particular focus on phase separation and crystallisation of components. These approaches can then be applied to semiconducting materials and their use in organic devices. Several key applications are studied, namely ambipolar systems with n- and p-type components, high charge carrier mobility and uniform films for high performance OFETs, and the potential for self-assembly during OFET fabrication. Blending materials can in all cases be used to combine the advantageous properties of the individual components.

Journal ArticleDOI
TL;DR: Flexible transistors and circuits based on dinaphtho-[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT), a conjugated semiconductor with a large ionization potential (5.4 eV), are reported.
Abstract: Flexible transistors and circuits based on dinaphtho-[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT), a conjugated semiconductor with a large ionization potential (5.4 eV), are reported. The transistors have a mobility of 0.6 cm(2) V-1 s(-1) and the ring oscillators have a stage delay of 18 mu s. Due to the excellent stability of the semiconductor, the devices and circuits maintain 50% of their initial performance for a period of 8 months in ambient air.

Journal ArticleDOI
Wolfgang L. Kalb1, Simon Haas1, Cornelius Krellner1, Thomas Mathis1, Bertram Batlogg1 
TL;DR: In this article, the authors studied the trap density of states (trap DOS) of small-molecule organic semiconductors as derived from electrical characteristics of organic field effect transistors or from space charge-limited current measurements.
Abstract: We show that it is possible to reach one of the ultimate goals of organic electronics: producing organic field-effect transistors with trap densities as low as in the bulk of single crystals. We studied the spectral density of localized states in the band gap [trap density of states (trap DOS)] of small-molecule organic semiconductors as derived from electrical characteristics of organic field-effect transistors or from space-charge-limited current measurements. This was done by comparing data from a large number of samples including thin-film transistors (TFT's), single crystal field-effect transistors (SC-FET's) and bulk samples. The compilation of all data strongly suggests that structural defects associated with grain boundaries are the main cause of ``fast'' hole traps in TFT's made with vacuum-evaporated pentacene. For high-performance transistors made with small-molecule semiconductors such as rubrene it is essential to reduce the dipolar disorder caused by water adsorbed on the gate dielectric surface. In samples with very low trap densities, we sometimes observe a steep increase in the trap DOS very close $(l0.15\text{ }\text{eV})$ to the mobility edge with a characteristic slope of 10--20 meV. It is discussed to what degree band broadening due to the thermal fluctuation of the intermolecular transfer integral is reflected in this steep increase in the trap DOS. Moreover, we show that the trap DOS in TFT's with small-molecule semiconductors is very similar to the trap DOS in hydrogenated amorphous silicon even though polycrystalline films of small-molecules with van der Waals-type interaction on the one hand are compared with covalently bound amorphous silicon on the other hand.

Journal ArticleDOI
TL;DR: In this paper, surface analytical studies of interface formation of organic semiconductors with different materials are reviewed, including metal-organic interface dipole formation, charge transfer, chemical reaction, energy level alignment, in-diffusion, quenching of luminescence and possible recovery of it.
Abstract: Surface and interface analytical studies have generated critical insight of the fundamental processes at interfaces involving organic semiconductors. I will review surface analytical studies of interface formation of organic semiconductors with different materials. Metal/organic interface is a focus of both device engineering and basic science, since it is a key factor in nearly all important aspects of device performances, including operation voltages, degradation, and efficiency. I will discuss metal–organic interface dipole formation, charge transfer, chemical reaction, energy level alignment, in-diffusion, quenching of luminescence and possible recovery of it. The effect of the insertion of ultra-thin interlayers such as LiF and doping by alkali metals will also be discussed. In organic/organic interface, the energy offset between the two dissimilar organic materials is vitally important to efficient device operation of organic light emitting diodes (OLED), as well as change separation at donor–acceptor interface in organic photovoltaic devices (OPV). I will discuss the interface energy level alignment, band bending, Debye screening, and charge separation dynamics as observed in surface analytical studies, and the implications to OLED and OPV. The interfaces of OSCs with other inorganic materials are also important. For organic thin film transistors (OTFT), the electronic properties of the interface formed between the organic and the dielectric strongly influences the current–voltage characteristics, as the electronic activity has been shown to occur primarily at the interface between the dielectric and the organic materials. I will review the interface formation of OSCs with dielectric materials and with indium-tin-oxide (ITO), a material whose transparency and conductivity make it indispensable for a number of opto-electronic applications and whose electronic properties and energy level alignment with organics have proven dramatically altered by surface treatments.

Journal ArticleDOI
TL;DR: This Concept Article advocates for taking into account supramolecular organization principles for all kinds of organic solid-state materials, irrespective of them being crystalline, liquid crystalline or amorphous, and discusses a showcase example, the utilization of merocyanine dyes as p-type organic semiconductors in bulk heterojunction (BHJ) solar cells.
Abstract: The common approach in organic materials science is dominated by the perception that the properties of the bulk materials are virtually determined by the properties of the molecular building blocks. In this Concept Article, we advocate for taking into account supramolecular organization principles for all kinds of organic solid-state materials, irrespective of them being crystalline, liquid crystalline, or amorphous, and discuss a showcase example, that is, the utilization of merocyanine dyes as p-type organic semiconductors in bulk heterojunction (BHJ) solar cells. Despite their extraordinarily large dipole moments, which are considered to be detrimental for efficient charge carrier transport, BHJ organic photovoltaic materials of these dyes with fullerenes have reached remarkable power conversion efficiencies of meanwhile nearly 5 %. These at the first glance contradictory properties are, however, well-understandable on the systems chemistry level.

Journal ArticleDOI
TL;DR: This paper introduces a general method for the fabrication of metal sulfide nanoparticle/polymer films employing a low-cost and low temperature route compatible with large-scale device manufacturing, based upon the controlled in situ thermal decomposition of a solution processable metal xanthate precursor complex in a semiconducting polymer film.
Abstract: Nanostructured composites of inorganic and organic materials are attracting extensive interest for electronic and optoelectronic device applications. In this paper, we introduce a general method for the fabrication of metal sulfide nanoparticle/polymer films employing a low-cost and low temperature route compatible with large-scale device manufacturing. Our approach is based upon the controlled in situ thermal decomposition of a solution processable metal xanthate precursor complex in a semiconducting polymer film. To demonstrate the versatility of our method, we fabricate a CdS/P3HT nanocomposite film and show that the metal sulfide network inside the polymer film assists in the absorption of visible light and enables the achievement of high yields of charge photogeneration at the CdS/P3HT heterojunction. Photovoltaic devices based upon such nanocomposite films show solar light to electrical energy conversion efficiencies of 0.7% under full AM1.5 illumination and 1.2% under 10% incident power, demonstrating the potential of such nanocomposite films for low-cost photovoltaic devices.

Journal ArticleDOI
TL;DR: In this article, the origins of intrinsic charge carrier traps in organic and polymeric semiconductor materials from a physical chemistry perspective were investigated from the point of view of intrinsic charged defects.
Abstract: We aim to understand the origins of intrinsic charge carrier traps in organic and polymeric semiconductor materials from a physical chemistry perspective. In crystalline organic semiconductors, we point out some of the inadequacies in the description of intrinsic charge traps using language and concepts developed for inorganic semiconductors. In π-conjugated polymeric semiconductors, we suggest the presence of a two-tier electronic energy landscape, a bimodal majority landscape due to two dominant structural motifs and a minority electronic energy landscape from intrinsic charged defects. The bimodal majority electronic energy landscape results from a combination of amorphous domains and microcrystalline or liquid-crystalline domains. The minority tier of the electronic density of states is comprised of deep Coulomb traps embedded in the majority electronic energy landscape. This minority electronic energy landscape may dominate transport properties at low charge carrier densities, such as those expected ...

Journal ArticleDOI
TL;DR: The successful demonstration of high and balanced ambipolar FET properties from nitrogen-containing oligoacenes opens up new opportunities for designing high-performance ambipolar organic semiconductors.
Abstract: We demonstrate a strategy for designing high-performance, ambipolar, acene-based field-effect transistor (FET) materials, which is based on the replacement of C−H moieties by nitrogen atoms in oligoacenes. By using this strategy, two organic semiconductors, 6,13-bis(triisopropylsilylethynyl)anthradipyridine (1) and 8,9,10,11-tetrafluoro-6,13-bis(triisopropylsilylethynyl)-1-azapentacene (3), were synthesized and their FET characteristics studied. Both materials exhibit high and balanced hole and electron mobilities, 1 having μh and μe of 0.11 and 0.15 cm2/V·s and 3 having μh and μe of 0.08 and 0.09 cm2/V·s, respectively. The successful demonstration of high and balanced ambipolar FET properties from nitrogen-containing oligoacenes opens up new opportunities for designing high-performance ambipolar organic semiconductors.

Journal ArticleDOI
16 Nov 2010-ACS Nano
TL;DR: In this paper, the elastic moduli of polythiophenes, regioregular poly(3-hexylthiophene) (P3HT) and poly-(2,5-bis (3-alkylthyphene-2-yl)thieno[3,2-b]thiophee) (pBTTT) are compared to their field effect mobility showing a proportional trend.
Abstract: The elastic moduli of polythiophenes, regioregular poly(3-hexylthiophene) (P3HT) and poly-(2,5-bis(3-alkylthiophene-2-yl)thieno[3,2-b]thiophene) (pBTTT), are compared to their field effect mobility showing a proportional trend. The elastic moduli of the films are measured using a buckling-based metrology, and the mobility is determined from the electrical characteristics of bottom contact thin film transistors. Moreover, the crack onset strain of pBTTT films is shown to be less than 2.5%, whereas that of P3HT is greater than 150%. These results show that increased long-range order in polythiophene semiconductors, which is generally thought to be essential for improved charge mobility, can also stiffen and enbrittle the film. This work highlights the critical role of quantitative mechanical property measurements in guiding the development of flexible organic semiconductors.