scispace - formally typeset
Search or ask a question

Showing papers on "Organic semiconductor published in 2017"


Journal ArticleDOI
19 Oct 2017-Nature
TL;DR: It is shown that an organic LPL system of two simple organic molecules that is free from rare elements and easy to fabricate can generate emission that lasts for more than one hour at room temperature, opening new applications for LPL in large-area and flexible paints, biomarkers, fabrics, and windows.
Abstract: Long persistent luminescence (LPL) materials-widely commercialized as 'glow-in-the-dark' paints-store excitation energy in excited states that slowly release this energy as light At present, most LPL materials are based on an inorganic system of strontium aluminium oxide (SrAl2O4) doped with europium and dysprosium, and exhibit emission for more than ten hours However, this system requires rare elements and temperatures higher than 1,000 degrees Celsius during fabrication, and light scattering by SrAl2O4 powders limits the transparency of LPL paints Here we show that an organic LPL (OLPL) system of two simple organic molecules that is free from rare elements and easy to fabricate can generate emission that lasts for more than one hour at room temperature Previous organic systems, which were based on two-photon ionization, required high excitation intensities and low temperatures By contrast, our OLPL system-which is based on emission from excited complexes (exciplexes) upon the recombination of long-lived charge-separated states-can be excited by a standard white LED light source and generate long emission even at temperatures above 100 degrees Celsius This OLPL system is transparent, soluble, and potentially flexible and colour-tunable, opening new applications for LPL in large-area and flexible paints, biomarkers, fabrics, and windows Moreover, the study of long-lived charge separation in this system should advance understanding of a wide variety of organic semiconductor devices

619 citations


Journal ArticleDOI
TL;DR: A facile bottom-up strategy to improve the activity of a carbon nitride to a level in which a majority of photons are really used to drive photoredox chemistry, which enables efficient photochemistry also with green light.
Abstract: Polymeric or organic semiconductors are promising candidates for photocatalysis but mostly only show moderate activity owing to strongly bound excitons and insufficient optical absorption. Herein, we report a facile bottom-up strategy to improve the activity of a carbon nitride to a level in which a majority of photons are really used to drive photoredox chemistry. Co-condensation of urea and oxamide followed by post-calcination in molten salt is shown to result in highly crystalline species with a maximum π–π layer stacking distance of heptazine units of 0.292 nm, which improves lateral charge transport and interlayer exciton dissociation. The addition of oxamide decreases the optical band gap from 2.74 to 2.56 eV, which enables efficient photochemistry also with green light. The apparent quantum yield (AQY) for H2 evolution of optimal samples reaches 57 % and 10 % at 420 nm and 525 nm, respectively, which is significantly higher than in most previous experiments.

540 citations


Journal ArticleDOI
TL;DR: Recent breakthroughs in molecular doping of organic semiconductors suggest a role for molecular doping not only in device function but also in fabrication-applications beyond those directly analogous to inorganic doping.
Abstract: The field of organic electronics thrives on the hope of enabling low-cost, solution-processed electronic devices with mechanical, optoelectronic, and chemical properties not available from inorganic semiconductors. A key to the success of these aspirations is the ability to controllably dope organic semiconductors with high spatial resolution. Here, recent progress in molecular doping of organic semiconductors is summarized, with an emphasis on solution-processed p-type doped polymeric semiconductors. Highlighted topics include how solution-processing techniques can control the distribution, diffusion, and density of dopants within the organic semiconductor, and, in turn, affect the electronic properties of the material. Research in these areas has recently intensified, thanks to advances in chemical synthesis, improved understanding of charged states in organic materials, and a focus on relating fabrication techniques to morphology. Significant disorder in these systems, along with complex interactions between doping and film morphology, is often responsible for charge trapping and low doping efficiency. However, the strong coupling between doping, solubility, and morphology can be harnessed to control crystallinity, create doping gradients, and pattern polymers. These breakthroughs suggest a role for molecular doping not only in device function but also in fabrication-applications beyond those directly analogous to inorganic doping.

363 citations


Journal ArticleDOI
TL;DR: In this paper, the authors highlight recent major progress in the development of organic semiconductors as electron transport n-channel materials in organic field effect transistors (OFETs) and discuss three types of materials: small molecules, polymers, and n-doped small molecules and polymers.
Abstract: This review highlights recent major progress in the development of organic semiconductors as electron transport n-channel materials in organic field effect transistors (OFETs). Three types of materials are discussed: (1) small molecules, (2) polymers, and (3) n-doped small molecules and polymers. Much effort has been made in the modification of known building blocks, development of novel building blocks, and optimization of materials processing and device structures. These efforts have resulted in the achievement of record high electron mobilities for both small molecules (12.6 cm2 V−1 s−1) and polymers (14.9 cm2 V−1 s−1), which are approaching the highest hole mobilities achieved by p-type small molecules and polymers so far. In addition, n-doping of ambipolar and p-type organic semiconductors has proven to be an efficient approach to obtaining a greater number of n-type organic semiconductors. However, it is found that n-type organic semiconductors, in general, still lag behind p-type organic semiconductors in terms of carrier mobility and air stability. Further exploration of new building blocks for making novel materials and optimization of processing conditions and device structures are needed to improve the performance, particularly air stability.

324 citations


Journal ArticleDOI
TL;DR: The results indicate that fluorobenzotriazole based 2D conjugated p-OSs are promising medium bandgap donors in the nonfullerene OSCs.
Abstract: In the last two years, polymer solar cells (PSCs) developed quickly with n-type organic semiconductor (n-OSs) as acceptor. In contrast, the research progress of nonfullerene organic solar cells (OSCs) with organic small molecule as donor and the n-OS as acceptor lags behind. Here, we synthesized a D–A structured medium bandgap organic small molecule H11 with bithienyl-benzodithiophene (BDTT) as central donor unit and fluorobenzotriazole as acceptor unit, and achieved a power conversion efficiency (PCE) of 9.73% for the all organic small molecules OSCs with H11 as donor and a low bandgap n-OS IDIC as acceptor. A control molecule H12 without thiophene conjugated side chains on the BDT unit was also synthesized for investigating the effect of the thiophene conjugated side chains on the photovoltaic performance of the p-type organic semiconductors (p-OSs). Compared with H12, the 2D-conjugated H11 with thiophene conjugated side chains shows intense absorption, low-lying HOMO energy level, higher hole mobility ...

293 citations


Journal ArticleDOI
TL;DR: This Account discusses organic DA complexes as a new class of semiconducting materials, including their design, growth methods, packing modes, charge-transport properties, and structure-property relationships, and demonstrates that using molecular "doping" (2:1 cocrystallization) can easily realize ambipolar or unipolar transport.
Abstract: ConspectusOrganic donor–acceptor (DA) complexes have attracted wide attention in recent decades, resulting in the rapid development of organic binary system electronics. The design and synthesis of organic DA complexes with a variety of component structures have mainly focused on metallicity (or even superconductivity), emission, or ferroelectricity studies. Further efforts have been made in high-performance electronic investigations. The chemical versatility of organic semiconductors provides DA complexes with a great number of possibilities for semiconducting applications. Organic DA complexes extend the semiconductor family and promote charge separation and transport in organic field-effect transistors (OFETs) and organic photovoltaics (OPVs). In OFETs, the organic complex serves as an active layer across extraordinary charge pathways, ensuring the efficient transport of induced charges.Although an increasing number of organic semiconductors have been reported to exhibit good p- or n-type properties (m...

250 citations


Journal ArticleDOI
TL;DR: Important general processing guidelines for the continued development of doped semiconducting polymers for thermoelectrics are introduced.
Abstract: The electrical performance of doped semiconducting polymers is strongly governed by processing methods and underlying thin-film microstructure. We report on the influence of different doping methods (solution versus vapor) on the thermoelectric power factor (PF) of PBTTT molecularly p-doped with F n TCNQ (n = 2 or 4). The vapor-doped films have more than two orders of magnitude higher electronic conductivity (σ) relative to solution-doped films. On the basis of resonant soft x-ray scattering, vapor-doped samples are shown to have a large orientational correlation length (OCL) (that is, length scale of aligned backbones) that correlates to a high apparent charge carrier mobility (μ). The Seebeck coefficient (α) is largely independent of OCL. This reveals that, unlike σ, leveraging strategies to improve μ have a smaller impact on α. Our best-performing sample with the largest OCL, vapor-doped PBTTT:F4TCNQ thin film, has a σ of 670 S/cm and an α of 42 μV/K, which translates to a large PF of 120 μW m-1 K-2. In addition, despite the unfavorable offset for charge transfer, doping by F2TCNQ also leads to a large PF of 70 μW m-1 K-2, which reveals the potential utility of weak molecular dopants. Overall, our work introduces important general processing guidelines for the continued development of doped semiconducting polymers for thermoelectrics.

250 citations


Journal ArticleDOI
TL;DR: In this article, a perovskite/perovsite tandem solar cells were constructed using two perov-site absorbers with complementary bandgaps, which achieved a maximum efficiency of 18% by using doped organic semiconductors.
Abstract: Efficient monolithic perovskite/perovskite tandem solar cells are fabricated using two perovskite absorbers with complementary bandgaps. By employing doped organic semiconductors, an efficient and selective extraction of the charge carriers is ensured. This study demonstrates perovskite/perovskite tandem cells delivering a maximum efficiency of 18%, highlighting the potential of vacuum-deposited multilayer structures in overcoming the efficiency of single-junction perovskite devices.

240 citations


Journal ArticleDOI
TL;DR: It is demonstrated difluoro-substitution of thiophene conjugated side chain on donor polymer can suppress triplet formation for reducing carrier recombination and indicates that side chain engineering can provide a new solution to suppress carrier recombinations toward high efficiency.
Abstract: Suppression of carrier recombination is critically important in realizing high-efficiency polymer solar cells. Herein, it is demonstrated difluoro-substitution of thiophene conjugated side chain on donor polymer can suppress triplet formation for reducing carrier recombination. A new medium bandgap 2D-conjugated D-A copolymer J91 is designed and synthesized with bi(alkyl-difluorothienyl)-benzodithiophene as donor unit and fluorobenzotriazole as acceptor unit, for taking the advantages of the synergistic fluorination on the backbone and thiophene side chain. J91 demonstrates enhanced absorption, low-lying highest occupied molecular orbital energy level, and higher hole mobility, in comparison with its control polymer J52 without fluorination on the thiophene side chains. The transient absorption spectra indicate that J91 can suppress the triplet formation in its blend film with n-type organic semiconductor acceptor m-ITIC (3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone)-5,5,11,11-tetrakis(3-hexylphenyl)-dithieno[2,3-d:2,3'-d']-s-indaceno[1,2-b:5,6-b']-dithiophene). With these favorable properties, a higher power conversion efficiency of 11.63% with high VOC of 0.984 V and high JSC of 18.03 mA cm-2 is obtained for the polymer solar cells based on J91/m-ITIC with thermal annealing. The improved photovoltaic performance by thermal annealing is explained from the morphology change upon thermal annealing as revealed by photoinduced force microscopy. The results indicate that side chain engineering can provide a new solution to suppress carrier recombination toward high efficiency, thus deserves further attention.

207 citations


Journal ArticleDOI
TL;DR: The present study highlights that constructing PHJs and adapting a rational molecular design of PHJs are effective strategies to exploit more of the potential of organic semiconductors for efficient solar energy conversion.
Abstract: Semiconducting photocatalytic solar-hydrogen conversion (SHC) from water is a great challenge for renewable fuel production. Organic semiconductors hold great promise for SHC in an economical and environmentally benign manner. However, organic semiconductors available for SHC are scarce and less efficient than most inorganic ones, largely due to their intrinsic Frenkel excitons with high binding energy. In this study the authors report polymer heterojunction (PHJ) photocatalysts consisting of polyfluorene family polymers and graphitic carbon nitride (g-C3 N4 ) for efficient SHC. A molecular design strategy is executed to further promote the exciton dissociation or light harvesting ability of these PHJs via alternative approaches. It is revealed that copolymerizing electron-donating carbazole unit into the poly(9,9-dioctylfluorene) backbone promotes exciton dissociation within the poly(N-decanyl-2,7-carbazole-alt-9,9-dioctylfluorene) (PCzF)/g-C3 N4 PHJ, achieving an enhanced apparent quantum yield (AQY) of 27% at 440 nm over PCzF/g-C3 N4 . Alternatively, copolymerizing electron-accepting benzothiadiazole unit extended the visible light response of the obtained poly(9,9-dioctylfluorene-alt-benzothiadiazole)/g-C3 N4 PHJ, leading to an AQY of 13% at 500 nm. The present study highlights that constructing PHJs and adapting a rational molecular design of PHJs are effective strategies to exploit more of the potential of organic semiconductors for efficient solar energy conversion.

207 citations


Journal ArticleDOI
TL;DR: Results demonstrate that the modulation of the conjugated backbone represents a powerful strategy for tuning the electronic structure and mobility of organic semiconductors toward a maximum thermoelectric performance.
Abstract: Conjugated backbones play a fundamental role in determining the electronic properties of organic semiconductors. On the basis of two solution-processable dihydropyrrolo[3,4-c]pyrrole-1,4-diylidenebis(thieno[3,2-b]thiophene) derivatives with aromatic and quinoid structures, we have carried out a systematic study of the relationship between the conjugated-backbone structure and the thermoelectric properties. In particular, a combination of UV–vis–NIR spectra, photoemission spectroscopy, and doping optimization are utilized to probe the interplay between energy levels, chemical doping, and thermoelectric performance. We found that a moderate change in the conjugated backbone leads to varied doping mechanisms and contributes to dramatic changes in the thermoelectric performance. Notably, the chemically doped A-DCV-DPPTT, a small molecule with aromatic structure, exhibits an electrical conductivity of 5.3 S cm–1 and a high power factor (PF373 K) up to 236 μW m–1 K–2, which is 50 times higher than that of Q-DCM...

Journal ArticleDOI
TL;DR: In this article, the effect of H- and J-aggregation on the photophysical properties and photovoltaic behavior of four electronically identical but structurally different thiophene-pyridine-diketopyrrolopyrrole molecules is studied.
Abstract: The performance of organic semiconductors in optoelectronic devices depends on the functional properties of the individual molecules and their mutual orientations when they are in the solid state. The effect of H- and J-aggregation on the photophysical properties and photovoltaic behavior of four electronically identical but structurally different thiophene–pyridine–diketopyrrolopyrrole molecules is studied. By introducing and changing the position of two hexyl side chains on the two peripheral thiophene units of these molecules, their aggregation in thin films between H-type and J-type is effectively tuned, as evidenced from the characteristics of optical absorption, fluorescence, and excited state lifetime. The two derivatives that assemble into J-type aggregates exhibit a significantly enhanced photovoltaic performance, up to an order of magnitude, compared to the two molecules that form H-type aggregates. The reasons for this remarkably different behavior are discussed.

Journal ArticleDOI
TL;DR: It is demonstrated that SERS-active, superhydrophobic and ivy-like nanostructured films of a molecular semiconductor, α,ω-diperfluorohexylquaterthiophene (DFH-4T), can be easily fabricated by vapour deposition and the fundamental roles of the π-conjugated core fluorocarbon substitution and the unique DFH- 4T film morphology governing the SERS response are demonstrated.
Abstract: π-Conjugated organic semiconductors have been explored in several optoelectronic devices, yet their use in molecular detection as surface-enhanced Raman spectroscopy (SERS)-active platforms is unknown. Herein, we demonstrate that SERS-active, superhydrophobic and ivy-like nanostructured films of a molecular semiconductor, α,ω-diperfluorohexylquaterthiophene (DFH-4T), can be easily fabricated by vapour deposition. DFH-4T films without any additional plasmonic layer exhibit unprecedented Raman signal enhancements up to 3.4 × 103 for the probe molecule methylene blue. The combination of quantum mechanical computations, comparative experiments with a fluorocarbon-free α,ω-dihexylquaterthiophene (DH-4T), and thin-film microstructural analysis demonstrates the fundamental roles of the π-conjugated core fluorocarbon substitution and the unique DFH-4T film morphology governing the SERS response. Furthermore, Raman signal enhancements up to ∼1010 and sub-zeptomole (<10-21 mole) analyte detection were accomplished by coating the DFH-4T films with a thin gold layer. Our results offer important guidance for the molecular design of SERS-active organic semiconductors and easily fabricable SERS platforms for ultrasensitive trace analysis.

Journal ArticleDOI
TL;DR: The use of oligo ethylene glycol side chains is demonstrated to significantly improve the processability of the conjugated polymer p(g4 2T-T)-a polythiophene-in polar aprotic solvents, which facilitates coprocessing of dopant:polymer pairs from the same solution at room temperature.
Abstract: Molecular doping of organic semiconductors is critical for optimizing a range of optoelectronic devices such as field-effect transistors, solar cells, and thermoelectric generators. However, many dopant:polymer pairs suffer from poor solubility in common organic solvents, which leads to a suboptimal solid-state nanostructure and hence low electrical conductivity. A further drawback is the poor thermal stability through sublimation of the dopant. The use of oligo ethylene glycol side chains is demonstrated to significantly improve the processability of the conjugated polymer p(g4 2T-T)-a polythiophene-in polar aprotic solvents, which facilitates coprocessing of dopant:polymer pairs from the same solution at room temperature. The use of common molecular dopants such as 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) is explored. Doping of p(g4 2T-T) with F4TCNQ results in an electrical conductivity of up to 100 S cm(-1) . Moreover, the increased compatibility of the polar dopant F4TCNQ with the oligo ethylene glycol functionalized polythiophene results in a high degree of thermal stability at up to 150 °C.

Journal ArticleDOI
Zi Wang1, Lizhen Huang1, Xiaofei Zhu1, Xu Zhou1, Lifeng Chi1 
TL;DR: After a comprehensive analysis on the morphology and electrical properties of the organic films, it is revealed that the ultrahigh performance is largely related to the film charge transport ability, which was less concerned in the studies previously.
Abstract: Organic semiconductor gas sensor is one of the promising candidates of room temperature operated gas sensors with high selectivity. However, for a long time the performance of organic semiconductor sensors, especially for the detection of oxidizing gases, is far behind that of the traditional metal oxide gas sensors. Although intensive attempts have been made to address the problem, the performance and the understanding of the sensing mechanism are still far from sufficient. Herein, an ultrasensitive organic semiconductor NO2 sensor based on 6,13-bis(triisopropylsilylethynyl)­pentacene (TIPS-petacene) is reported. The device achieves a sensitivity over 1000%/ppm and fast response/recovery, together with a low limit of detection (LOD) of 20 ppb, all of which reach the level of metal oxide sensors. After a comprehensive analysis on the morphology and electrical properties of the organic films, it is revealed that the ultrahigh performance is largely related to the film charge transport ability, which was less concerned in the studies previously. And the combination of efficient charge transport and low original charge carrier concentration is demonstrated to be an effective access to obtain high performance organic semiconductor gas sensors.

Journal ArticleDOI
TL;DR: In this paper, a combination of ink chemistry, solid-state polymer removal, and charge-transfer doping strategies was used to achieve unprecedented n-type and p-type TE power factors, in the range of 700 μW m−1 K−2 at 298 K for the same solution-processed highly enriched thin films containing 100% s-SWCNTs.
Abstract: Lightweight, robust, and flexible single-walled carbon nanotube (SWCNT) materials can be processed inexpensively using solution-based techniques, similar to other organic semiconductors. In contrast to many semiconducting polymers, semiconducting SWCNTs (s-SWCNTs) represent unique one-dimensional organic semiconductors with chemical and physical properties that facilitate equivalent transport of electrons and holes. These factors have driven increasing attention to employing s-SWCNTs for electronic and energy harvesting applications, including thermoelectric (TE) generators. Here we demonstrate a combination of ink chemistry, solid-state polymer removal, and charge-transfer doping strategies that enable unprecedented n-type and p-type TE power factors, in the range of 700 μW m−1 K−2 at 298 K for the same solution-processed highly enriched thin films containing 100% s-SWCNTs. We also demonstrate that the thermal conductivity appears to decrease with decreasing s-SWCNT diameter, leading to a peak material zT ≈ 0.12 for s-SWCNTs with diameters in the range of 1.0 nm. Our results indicate that the TE performance of s-SWCNT-only material systems is approaching that of traditional inorganic semiconductors, paving the way for these materials to be used as the primary components for efficient, all-organic TE generators.

Journal ArticleDOI
TL;DR: The fused polycyclic furan structure is a ubiquitous motif in naturally occurring organic compounds and is found to possess electronic structures resembling those of fused polyaromatic hydrocarbons, such as acenes or phenacenes, rather than oxygen-bridged phenylenevinylene, along with unique characteristics.
Abstract: The fused polycyclic furan structure is a ubiquitous motif in naturally occurring organic compounds. However, they had been rarely seen in the literature of organic electronic research until very recently, probably because of the lack of stability of simple furans under conditions that the compounds experience in the active layer of the device. Nonetheless, from the viewpoint of molecular structure, furans look to have potential merits as organic semiconductors such as thiophenes, which are more popular in the organic electronic area. For example, the small atomic radius and large electronegativity of oxygen will increase intermolecular molecular orbital (MO) overlap and hence facilitate charge transporting ability in the solid state. In this Account, we describe the molecular design and optoelectronic applications of fused polycyclic furans, such as benzodifurans (BDFs), naphthodifurans (NDFs), and anthradifurans (ADFs). The molecular design that was exploited in this study crucially depends on the synthetic flexibility of a "modular" synthetic strategy that we purposely developed and reviewed in a separate report. Our synthetic strategy comprises two steps carried out in situ: cyclization of an o-alkynylphenol into a zincio benzofuran and its electrophilic Negishi-type trapping to obtain a range of multisubstituted fused furan compounds. These compounds are found to possess electronic structures resembling those of fused polyaromatic hydrocarbons, such as acenes or phenacenes, rather than oxygen-bridged phenylenevinylene, along with unique characteristics: a wide HOMO-LUMO gap originating from the weak aromaticity of the furan rings, an intense photoluminescent character, and mechanofluorochromism. Semiconducting properties of fused furans are also excellent among organic materials: some BDF derivatives show high hole mobility on the order of 10-3 cm2/(V s) in the amorphous state using time-of-flight (TOF) technique. The p-type BDFs exhibit high performance as hole-transporting material in heterojunction organic light-emitting diodes (OLEDs), while carbazole-substituted BDFs (CZBDFs) are ambipolar with well-balanced high carrier mobility for both hole and electron and serve as host materials for full-color electroluminescence in both hetero- and homojunction architectures. More π-expanded NDFs showed good crystallinity and are effective active materials for organic field-effect transistors (OFETs) with a high hole mobility of up to 3.6 cm2/(V s) using a solution process. These studies have illustrated the high potential of fused polycyclic furans in organic electronics research, which thus far have attracted much less attention than their thiophene congeners.

Journal ArticleDOI
TL;DR: Naphthyl units at 2,6-positions of anthracene are introduced to achieve dNaAnt, which adopts J-aggregated mode in the solid state as a balanced strategy for excellent charge transporting and efficient solid state emission.
Abstract: Organic semiconductors integrating excellent charge transport with efficient solid emission are very challenging to be attained in the construction of light-emitting transistors and even for realization of electrically pumped organic lasers. Herein, we introduce naphthyl units at 2,6-positions of anthracene to achieve 2,6-di(2-naphthyl)anthracene (dNaAnt), which adopts J-aggregated mode in the solid state as a balanced strategy for excellent charge transporting and efficient solid state emission. Single crystal field-effect transistors show mobility up to 12.3 cm2·V–1·s–1 and a photoluminescence quantum yield of 29.2% was obtained for dNaAnt crystals. Furthermore, organic light-emitting transistors (OLETs) based on dNaAnt single crystals distribute outstanding balanced ambipolar charge transporting property (μh = 1.10 cm2·V–1·s–1, μe = 0.87 cm2·V–1·s–1) and spatially controllable emission, which is one of the best performances for OLETs.

Journal ArticleDOI
TL;DR: ESM data indicate that nanoscale variations in ion uptake are associated with local changes in polymer packing that may impede ion transport to different extents within the same macroscopic film and can inform future materials optimization.
Abstract: Ionic transport phenomena in organic semiconductor materials underpin emerging technologies ranging from bioelectronics to energy storage. The performance of these systems is affected by an interplay of film morphology, ionic transport and electronic transport that is unique to organic semiconductors yet poorly understood. Using in situ electrochemical strain microscopy (ESM), we demonstrate that we can directly probe local variations in ion transport in polymer devices by measuring subnanometre volumetric expansion due to ion uptake following electrochemical oxidation of the semiconductor. The ESM data show that poly(3-hexylthiophene) electrochemical devices exhibit voltage-dependent heterogeneous swelling consistent with device operation and electrochromism. Our data show that polymer semiconductors can simultaneously exhibit field-effect and electrochemical operation regimes, with the operation modality and its distribution varying locally as a function of nanoscale film morphology, ion concentration and potential. Importantly, we provide a direct test of structure-function relationships by correlating strain heterogeneity with local stiffness maps. These data indicate that nanoscale variations in ion uptake are associated with local changes in polymer packing that may impede ion transport to different extents within the same macroscopic film and can inform future materials optimization.

Journal ArticleDOI
TL;DR: In this paper, a novel inverted PSC employs a SnO2-coated carbon nanotube (SnO2@CSCNT) film as cathode in both rigid and flexible substrates.
Abstract: Organolead halide perovskite solar cells (PSC) are arising as promising candidates for next-generation renewable energy conversion devices. Currently, inverted PSCs typically employ expensive organic semiconductor as electron transport material and thermally deposited metal as cathode (such as Ag, Au, or Al), which are incompatible with their large-scale production. Moreover, the use of metal cathode also limits the long-term device stability under normal operation conditions. Herein, a novel inverted PSC employs a SnO2-coated carbon nanotube (SnO2@CSCNT) film as cathode in both rigid and flexible substrates (substrate/NiO-perovskite/Al2O3-perovskite/SnO2@CSCNT-perovskite). Inverted PSCs with SnO2@CSCNT cathode exhibit considerable enhancement in photovoltaic performance in comparison with the devices without SnO2 coating owing to the significantly reduced charge recombination. As a result, a power conversion efficiency of 14.3% can be obtained on rigid substrates while the flexible ones achieve 10.5% efficiency. More importantly, SnO2@CSCNT-based inverted PSCs exhibit significantly improved stability compared to the standard inverted devices made with silver cathode, retaining over 88% of their original efficiencies after 550 h of full light soaking or thermal stress. The results indicate that SnO2@CSCNT is a promising cathode material for long-term device operation and pave the way toward realistic commercialization of flexible PSCs.

Journal ArticleDOI
TL;DR: In this article, photo-activation of a cleavable air-stable dimeric dopant can result in kinetically stable and efficient n-doping of host semiconductors, whose reduction potentials are beyond the thermodynamic reach of the dimer.
Abstract: Chemical doping of organic semiconductors using molecular dopants plays a key role in the fabrication of efficient organic electronic devices. Although a variety of stable molecular p-dopants have been developed and successfully deployed in devices in the past decade, air-stable molecular n-dopants suitable for materials with low electron affinity are still elusive. Here we demonstrate that photo-activation of a cleavable air-stable dimeric dopant can result in kinetically stable and efficient n-doping of host semiconductors, whose reduction potentials are beyond the thermodynamic reach of the dimer’s effective reducing strength. Electron-transport layers doped in this manner are used to fabricate high-efficiency organic light-emitting diodes. Our strategy thus enables a new paradigm for using air-stable molecular dopants to improve conductivity in, and provide ohmic contacts to, organic semiconductors with very low electron affinity. The activation of cleavable organometallic dimers upon exposure to ultraviolet radiation allows air-stable n-type doping of organic materials with electron affinity lower than the expected thermodynamic reducing strength of the dimers.

Journal ArticleDOI
TL;DR: High-performance phototransistors based on IHP QDs hybridized with organic semiconductors (OSCs) are developed that exhibit outstanding optoelectronic properties and are superior to state-of-the-art IHP photodetectors.
Abstract: All-inorganic lead halide perovskite quantum dots (IHP QDs) have great potentials in photodetectors. However, the photoresponsivity is limited by the low charge transport efficiency of the IHP QD layers. High-performance phototransistors based on IHP QDs hybridized with organic semiconductors (OSCs) are developed. The smooth surface of IHP QD layers ensures ordered packing of the OSC molecules above them. The OSCs significantly improve the transportation of the photoexcited charges, and the gate effect of the transistor structure significantly enhances the photoresponsivity while simultaneously maintaining high Iphoto/Idark ratio. The devices exhibit outstanding optoelectronic properties in terms of photoresponsivity (1.7 × 104 A W−1), detectivity (2.0 × 1014 Jones), external quantum efficiency (67000%), Iphoto/Idark ratio (8.1 × 104), and stability (100 d in air). The overall performances of our devices are superior to state-of-the-art IHP photodetectors. The strategy utilized here is general and can be easily applied to many other perovskite photodetectors.

Journal ArticleDOI
TL;DR: In this article, the authors integrated organic-inorganic hybrid perovskite photoactive layers with low-bandgap organic bulk-heterojunction (BHJ) layers to produce a device that combined the advantages of the two types of photodetectors.
Abstract: Low-cost organic photodetectors have shown sensitivity levels comparable to those of inorganic photodetectors, but with response speeds generally limited to the megahertz range due to the low mobility of organic semiconductors. Here, we integrated organic–inorganic hybrid perovskite (OIHP) photoactive layers with low-bandgap organic bulk-heterojunction (BHJ) layers to produce a device that combined the advantages of the two types of photodetectors. Integrating methylammonium lead triiodide (CH3NH3PbI3) with a low-bandgap BHJ layer extended the response of perovskite photodetectors to a wavelength of 1000 nanometers without deteriorating the responsivity and specific detectivity of either type of photodetector. The high mobility of charge carriers in CH3NH3PbI3 allowed the constraints of the resistance–capacitance constant to be relieved so that the device response speed could be increased dramatically. A response time of five nanoseconds was measured for incident infrared light from the device with an active area of 0.1 square millimeters, which represents the state-of-the-art performance for organic-based photodetectors.

Journal ArticleDOI
Zhichao Zhang1, Boyu Peng1, Xudong Ji1, Ke Pei1, Paddy K. L. Chan1 
TL;DR: In this paper, the Marangoni flow induced by a temperature-dependent surface-tension gradient near the meniscus line shows negative effects on the deposited crystals and its electrical properties.
Abstract: Low-cost solution-shearing methods are highly desirable for deposition of organic semiconductor crystals over a large area. To enhance the rate of evaporation and deposition, elevated substrate temperature is commonly employed during shearing processes. However, the Marangoni flow induced by a temperature-dependent surface-tension gradient near the meniscus line shows negative effects on the deposited crystals and its electrical properties. In the current study, the Marangoni effect to improve the shearing process of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene for organic field-effect transistor (OFET) applications is utilized and regulated. By modifying the gradient of surface tension with different combinations of solvents, the mass transport of molecules is much more favorable, which largely enhances the deposition rate, reduces organic crystal thickness, enlarges grain sizes, and improves coverage. The average and highest mobility of OFETs can be increased up to 13.7 and 16 cm2 V−1 s−1. This method provides a simple deposition approach on a large scale, which allows to further fabricate large-area circuits, flexible displays, or bioimplantable sensors.

Journal ArticleDOI
TL;DR: In this article, it was shown that introducing tunable nanopores (50-700 nm) to organic semiconductor thin films enhances their reactivity with volatile organic compounds by up to an order of magnitude, while the surface-area-to-volume ratio is almost unchanged.
Abstract: Porous materials are ubiquitous in nature and have found a wide range of applications because of their unique absorption, optical, mechanical, and catalytic properties. Large surface-area-to-volume ratio is deemed a key factor contributing to their catalytic properties. Here, it is shown that introducing tunable nanopores (50–700 nm) to organic semiconductor thin films enhances their reactivity with volatile organic compounds by up to an order of magnitude, while the surface-area-to-volume ratio is almost unchanged. Mechanistic investigations show that nanopores grant direct access to the highly reactive sites otherwise buried in the conductive channel of the transistor. The high reactivity of nanoporous organic field-effect transistors leads to unprecedented ultrasensitive, ultrafast, selective chemical sensing below the 1 ppb level on a hundred millisecond time scale, enabling a wide range of health and environmental applications. Flexible sensor chip for monitoring breath ammonia is further demonstrated; this is a potential biomarker for chronic kidney disease.

Journal ArticleDOI
TL;DR: This study provides evidence that the development of a continuous-wave organic semiconductor laser technology is possible via the engineering of the gain medium and the device architecture.
Abstract: The demonstration of continuous-wave lasing from organic semiconductor films is highly desirable for practical applications in the areas of spectroscopy, data communication, and sensing, but it still remains a challenging objective. We report low-threshold surface-emitting organic distributed feedback lasers operating in the quasi-continuous-wave regime at 80 MHz as well as under long-pulse photoexcitation of 30 ms. This outstanding performance was achieved using an organic semiconductor thin film with high optical gain, high photoluminescence quantum yield, and no triplet absorption losses at the lasing wavelength combined with a mixed-order distributed feedback grating to achieve a low lasing threshold. A simple encapsulation technique greatly reduced the laser-induced thermal degradation and suppressed the ablation of the gain medium otherwise taking place under intense continuous-wave photoexcitation. Overall, this study provides evidence that the development of a continuous-wave organic semiconductor laser technology is possible via the engineering of the gain medium and the device architecture.

Journal ArticleDOI
TL;DR: A class of light-matter excitations called dark vibronic polaritons are introduced, which strongly emit but only weakly absorb light in the same frequency region of the bare electronic transition, paving the way for the development of optoelectronic devices enhanced by quantum optics.
Abstract: Organic microcavities are photonic nanostructures that strongly confine the electromagnetic field, allowing exotic quantum regimes of light-matter interaction with disordered organic semiconductors. The unambiguous interpretation of the spectra of organic microcavities has been a long-standing challenge due to several competing effects involving electrons, vibrations, and cavity photons. Here we present a theoretical framework that is able to describe the main spectroscopic features of organic microcavities consistently. We introduce a class of light-matter excitations called dark vibronic polaritons, which strongly emit but only weakly absorb light in the same frequency region of the bare electronic transition. A successful comparison with experimental data demonstrates the applicability of our theory. The proposed microscopic understanding of organic microcavities paves the way for the development of optoelectronic devices enhanced by quantum optics.

Journal ArticleDOI
TL;DR: In this paper, a linear relationship between spin and momentum relaxation was found for an organic semiconductor crystal that has ultra-long spin lifetimes and coherent band-like transport, and the spin relaxation was shown to be governed by the Elliott-Yafet mechanism.
Abstract: A linear relationship between spin and momentum relaxation shows that the spin relaxation in an organic semiconductor crystal that has ultra-long spin lifetimes and coherent band-like transport is governed by the Elliott–Yafet mechanism.

Journal ArticleDOI
19 Jul 2017-ACS Nano
TL;DR: It is shown that organic field-effect transistors made from the helically chiral molecule 1-aza[6]helicene can display up to an 80-fold difference in hole mobility, together with differences in thin-film photophysics and morphology, solely depending on whether a single handedness or a 1:1 mixture of left- and right-handed molecules is employed under analogous fabrication conditions.
Abstract: Chiral molecules exist as pairs of nonsuperimposable mirror images; a fundamental symmetry property vastly underexplored in organic electronic devices. Here, we show that organic field-effect transistors (OFETs) made from the helically chiral molecule 1-aza[6]helicene can display up to an 80-fold difference in hole mobility, together with differences in thin-film photophysics and morphology, solely depending on whether a single handedness or a 1:1 mixture of left- and right-handed molecules is employed under analogous fabrication conditions. As the molecular properties of either mirror image isomer are identical, these changes must be a result of the different bulk packing induced by chiral composition. Such underlying structures are investigated using crystal structure prediction, a computational methodology rarely applied to molecular materials, and linked to the difference in charge transport. These results illustrate that chirality may be used as a key tuning parameter in future device applications.

Journal ArticleDOI
Jingjing Lu1, Dapeng Liu1, Jiachen Zhou1, Yingli Chu1, Yantao Chen1, Xiaohan Wu1, Jia Huang1 
TL;DR: In this article, it has been demonstrated that OFET ammonia sensors with porous OSC films can be fabricated by a simple vacuum freeze-drying template method, and the resulted devices can have ammonia sensitivity not only much higher than the pristine OFETs with thin-film structure but also better than any previously reported OFET sensors, to the best of their knowledge.
Abstract: The thin-film structures of chemical sensors based on conventional organic field-effect transistors (OFETs) can limit the sensitivity of the devices toward chemical vapors, because charge carriers in OFETs are usually concentrated within a few molecular layers at the bottom of the organic semiconductor (OSC) film near the dielectric/semiconductor interface. Chemical vapor molecules have to diffuse through the OSC films before they can interact with charge carriers in the OFET conduction channel. It has been demonstrated that OFET ammonia sensors with porous OSC films can be fabricated by a simple vacuum freeze-drying template method. The resulted devices can have ammonia sensitivity not only much higher than the pristine OFETs with thin-film structure but also better than any previously reported OFET sensors, to the best of our knowledge. The porous OFETs show a relative sensitivity as high as 340% ppm−1 upon exposure to 10 parts per billion (ppb) NH3. In addition, the devices also exhibit decent selectivity and stability. This general and simple strategy can be applied to a wide range of OFET chemical sensors to improve the device sensitivity.