scispace - formally typeset
Search or ask a question
Topic

Organic semiconductor

About: Organic semiconductor is a research topic. Over the lifetime, 15905 publications have been published within this topic receiving 533881 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A model that assumes that due to molecular disorder, only a subset of DPT dimer pairs adopt configurations that promote fission is developed, and it is found that DPT exhibits a surprisingly high singlet fission yield.
Abstract: Singlet exciton fission is a process that occurs in select organic semiconductors and entails the splitting of a singlet excited state into two lower triplet excitons located on adjacent chromophores. Research examining this phenomenon has recently seen a renaissance due to the potential to exploit singlet fission within the context of organic photovoltaics to prepare devices with the ability to circumvent the Shockley–Queisser limit. To date, high singlet fission yields have only been reported for crystalline or polycrystalline materials, suggesting that molecular disorder inhibits singlet fission. Here, we report the results of ultrafast transient absorption and time-resolved emission experiments performed on 5,12-diphenyl tetracene (DPT). Unlike tetracene, which tends to form polycrystalline films when vapor deposited, DPT’s pendant phenyl groups frustrate crystal growth, yielding amorphous films. Despite the high level of disorder in these films, we find that DPT exhibits a surprisingly high singlet f...

278 citations

Journal ArticleDOI
09 Jul 1999-Science
TL;DR: Appropriate confinement of photons and electron-hole pairs in these organic semiconductor-based structures can be achieved and low levels of chemical doping improve electrical conductivity through these structures without detriment to their photonic properties.
Abstract: Composites of nanoparticles and conjugated polymers that exhibit composition-tunable optical constants have been developed for use in semiconducting photonic structures. For example, the 550-nanometer wavelength in-plane refractive index of poly(p-phenylenevinylene)-silica composites can be tailored over the range of 1.6 to 2.7, allowing efficient distributed Bragg reflectors and waveguides to be fabricated. Low levels of chemical doping improve electrical conductivity through these structures without detriment to their photonic properties. Exemplifying these concepts, all-polymer microcavities and microcavity light-emitting diodes were demonstrated. Appropriate confinement of photons and electron-hole pairs in these organic semiconductor-based structures can be achieved.

277 citations

Journal ArticleDOI
TL;DR: This Review summarizes recent advances in the use of organic electronic materials for the detection of environmental chemicals, pressure, and light.
Abstract: Organic semiconductor films are susceptible to noncovalent interactions, trapping and doping, photoexcitation, and dimensional deformation. While these effects can be detrimental to the performance of conventional circuits, they can be harnessed, especially in field-effect architectures, to detect chemical and physical stimuli. This Review summarizes recent advances in the use of organic electronic materials for the detection of environmental chemicals, pressure, and light. The material features that are responsible for the transduction of the input signals to electronic information are discussed in detail.

277 citations

Journal ArticleDOI
TL;DR: In this article, a review of surface transfer doping of semiconductors is presented, focusing on diamond, epitaxial graphene thermally grown on SiC, and organic semiconductor.

277 citations

Journal ArticleDOI
TL;DR: This work fabricated bilayer organic photovoltaic devices with interfacial dipole moments that were selected to align the energy levels at the heterojunction using a simple film-transfer method.
Abstract: The energy-level alignment at the heterojunction critically influences the performance of organic photovoltaic devices. It is now shown that the surface dipole moments of individual organic semiconductor films can be tuned with surface-segregated monolayers before forming bilayer solar cells by a simple film-transfer method.

276 citations


Network Information
Related Topics (5)
Silicon
196K papers, 3M citations
92% related
Thin film
275.5K papers, 4.5M citations
92% related
Graphene
144.5K papers, 4.9M citations
91% related
Carbon nanotube
109K papers, 3.6M citations
91% related
Oxide
213.4K papers, 3.6M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023258
2022558
2021580
2020697
2019701
2018713