scispace - formally typeset
Search or ask a question
Topic

Organic semiconductor

About: Organic semiconductor is a research topic. Over the lifetime, 15905 publications have been published within this topic receiving 533881 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a perovskite/perovsite tandem solar cells were constructed using two perov-site absorbers with complementary bandgaps, which achieved a maximum efficiency of 18% by using doped organic semiconductors.
Abstract: Efficient monolithic perovskite/perovskite tandem solar cells are fabricated using two perovskite absorbers with complementary bandgaps. By employing doped organic semiconductors, an efficient and selective extraction of the charge carriers is ensured. This study demonstrates perovskite/perovskite tandem cells delivering a maximum efficiency of 18%, highlighting the potential of vacuum-deposited multilayer structures in overcoming the efficiency of single-junction perovskite devices.

240 citations

Journal ArticleDOI
TL;DR: Using soluble polymers for the active layer and insulating layer, a concept for the fabrication of fast integrated circuits based on p-type organic transistors only is reported in this paper, where ring oscillators with frequencies above 100 kHz and propagation stage delays below 0.7 μs are presented.
Abstract: Using soluble polymers for the active layer and insulating layer, we report on a concept for the fabrication of fast integrated circuits based on p-type organic transistors only. Ring oscillators with frequencies above 100 kHz and propagation stage delays below 0.7 μs are presented. They show a very stable performance over time even without encapsulation, when stored and measured under ambient conditions. Regioregular poly(3-alkylthiophen) is used as the active semiconducting layer, a polymer blend as the insulator, a flexible polyester film as the substrate and metal electrodes. To enable vertical interconnects, the insulating layer is patterned.

240 citations

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate tuning of hole injection barriers in bottom contact triisopropylsilylethynyl pentacene (TIPS-pentacene) organic thin film transistors (OTFTs).
Abstract: We demonstrate tuning of hole injection barriers in bottom contact triisopropylsilylethynyl pentacene (TIPS-pentacene) organic thin film transistors (OTFTs) by forming the self-assembled monolayers (SAMs) of thiophenol, 4-fluorothiophenol, or pentafluorothiophenol on the pristine Ag electrode. The work functions of SAM-treated Ag electrodes are measured by Kelvin probe method. The TIPS-pentacene OTFT devices were fabricated by a drop-cast method with a micropipette like an inkjet printing. The OTFTs with pentafluorothiophenol-Ag electrodes as source and drain exhibit carrier mobility of 0.17cm2∕Vs and on/off current ratio of 105 because of almost no hole injection barrier to TIPS pentacenes. The SAM-treated Ag electrodes are robust over repeated electrical scans of 100cycles.

240 citations

Journal ArticleDOI
TL;DR: In this article, self-assembled monolayers (SAMs) were used to control the anode work function and active layer morphology of organic solar cells based on poly(3-hexylthiophene)/[6:6]-phenyl-C61 butyric acid methyl ester heterojunctions.
Abstract: Indium tin oxide (ITO) substrates modified with self-assembled monolayers (SAMs) were used to control the anode work function and active layer morphology of organic solar cells based on poly(3-hexylthiophene)/[6:6]-phenyl-C61 butyric acid methyl ester heterojunctions. By using SAMs with the terminal groups –NH2, –CH3, and –CF3, the authors were able to control the hole injection barrier of the ITO closer to the highest occupied molecular orbital level of active layer and surface energy of the ITO substrate. A solar cell device with CF3 SAM treated ITO was found to exhibit high efficiency performance, about 3.15%.

238 citations

Journal ArticleDOI
TL;DR: A polythiophene derivative containing thermally removable branched ester solubilizing groups has been prepared and tested as a processable organic semiconductor polymer with tunable electronic and chemical properties for hybrid polymer-inorganic solar cells.
Abstract: A polythiophene derivative containing thermally removable branched ester solubilizing groups has been prepared and tested as a processable organic semiconductor polymer with tunable electronic and chemical properties for hybrid polymer−inorganic solar cells. Thermal removal of the protecting group enhances the interface between the organic and inorganic components while also contributing to better light absorption, energy transfer, and overall cell performance.

238 citations


Network Information
Related Topics (5)
Silicon
196K papers, 3M citations
92% related
Thin film
275.5K papers, 4.5M citations
92% related
Graphene
144.5K papers, 4.9M citations
91% related
Carbon nanotube
109K papers, 3.6M citations
91% related
Oxide
213.4K papers, 3.6M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023258
2022558
2021580
2020697
2019701
2018713