scispace - formally typeset
Search or ask a question
Topic

Organic semiconductor

About: Organic semiconductor is a research topic. Over the lifetime, 15905 publications have been published within this topic receiving 533881 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the electronic and optical properties of π-conjugated systems were evaluated by UV-Vis spectroscopy in CHCl3 solution for a large number of relevant πconjugation systems: tris-8-hydroxyquinolinatos (Alq3, Gaq3 and Inq3); oligoacenes (naphthalene, anthracene, tetracene and rubrene); oligothiophenes (α-2T, β-2t, α-3T,β-4T and α-

235 citations

Journal ArticleDOI
TL;DR: The features of soft, laminated contacts are demonstrated by fabricating large arrays of high-performance thin film transistors on plastic substrates by using a wide variety of organic semiconductors.
Abstract: Soft, conformable electrical contacts provide efficient, noninvasive probes for the transport properties of chemically and mechanically fragile, ultrathin organic semiconducting films. When combined with high-resolution printing and lamination techniques, these soft contacts also form the basis of a powerful technique for fabricating flexible plastic circuits. In this approach, a thin elastomeric film on a plastic substrate supports the electrodes and interconnections; laminating this substrate against another plastic substrate that supports the gate, dielectric and semiconductor levels establishes effective electrical contacts and completes the circuits. In addition to eliminating many of the problems associated with traditional layer-by-layer fabrication strategies, this lamination scheme possesses other attractive features: the transistors and circuit elements are naturally and efficiently encapsulated, and the active organic semiconductor layer is placed near the neutral mechanical plane. We demonstrate the features of soft, laminated contacts by fabricating large arrays of high-performance thin film transistors on plastic substrates by using a wide variety of organic semiconductors.

234 citations

Journal ArticleDOI
TL;DR: In this article, the influence of silver nanoparticles on light absorption in organic solar cells based on poly(3-exylthiophene):(6,6)-phenyl-C61-butyric-acid-methyl ester is studied by means of finite element method simulations.
Abstract: The influence of silver nanoparticles on light absorption in organic solar cells based on poly(3-exylthiophene):(6,6)-phenyl-C61-butyric-acid-methyl ester is studied by means of finite element method simulations. The metallic nanoparticles are embedded directly inside the active layer. We investigate the enhancement mechanism and the influence of factors such as the spacing between neighboring nanoparticles, the particle diameter, and the coating thickness. The plasmonic resonance of the particles has a wideband influence on the absorption, and we observe a rich interaction between plasmonic enhancement and the absorption characteristics of the active layer material. An enhancement with a factor of around 1.56 is observed for nanoparticles with a diameter of 24 nm and a spacing of 40 nm, bringing the structure to the absorption level of much thicker active layers without nanoparticles. In addition, a significant effect of the particle coating thickness is observed.

234 citations

Journal ArticleDOI
TL;DR: In this article, temperature-dependent measurements of thin-film transistors were performed to gain insight in the electronic transport of polycrystalline pentacene, and the influence of the dielectric roughness and the deposition temperature of the thermally evaporated pentaene films were studied.
Abstract: Temperature-dependent measurements of thin-film transistors were performed to gain insight in the electronic transport of polycrystalline pentacene. Devices were fabricated with plasma-enhanced chemical vapor deposited silicon nitride gate dielectrics. The influence of the dielectric roughness and the deposition temperature of the thermally evaporated pentacene films were studied. Although films on rougher gate dielectrics and films prepared at low deposition temperatures exhibit similar grain size, the electronic properties are different. Increasing the dielectric roughness reduces the free carrier mobility, while low substrate temperature leads to more and deeper hole traps.

234 citations

Journal ArticleDOI
TL;DR: In this article, a quasi-stable threshold voltage (Vt) shift is applied to field effect transistors (FETs) with organic semiconductors and polymer dielectrics.
Abstract: A quasi-stable threshold voltage (Vt) shift is imparted onto field-effect transistors (FETs) with organic semiconductors and polymer dielectrics. Adjustment of Vt from accumulation mode to zero or depletion mode is demonstrated for both p-channel and n-channel FETs, and is accomplished by applying a depletion voltage to the gate prior to device operation. Hydrophobic dielectrics and dopant-resistant semiconductors were advantageous. A pixel circuit that utilizes this nonvolatile memory element is proposed.

234 citations


Network Information
Related Topics (5)
Silicon
196K papers, 3M citations
92% related
Thin film
275.5K papers, 4.5M citations
92% related
Graphene
144.5K papers, 4.9M citations
91% related
Carbon nanotube
109K papers, 3.6M citations
91% related
Oxide
213.4K papers, 3.6M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023258
2022558
2021580
2020697
2019701
2018713