scispace - formally typeset
Search or ask a question

Showing papers on "Orientation column published in 1995"


Journal ArticleDOI
01 Oct 1995-Neuron
TL;DR: The contextual sensitivity of human contrast thresholds and of superficial layer complex cells in monkey V1 was measured and it was shown that 42% of complex cells demonstrated facilitation for a second bar outside their classical receptive fields with a similar dependency on relative location and orientation.

916 citations


Journal ArticleDOI
TL;DR: The results show that context modulation within primary visual cortex has a highly sophisticated nature, putting the image features the cells are responding to into their fully evaluated perceptual context.
Abstract: The activity of neurons in the primary visual cortex of the awake macaque monkey was recorded while the animals were viewing full screen arrays of either oriented line segments or moving random dots. A square patch of the screen was made to perceptually pop out as a circumscribed figure by virtue of differences between the orientation or the direction of motion of the texture elements within that patch and the surround. The animals were trained to identify the figure patches by making saccadic eye movements towards their positions. Almost every cell gave a significantly larger response to elements belonging to the figure than to similar elements belonging to the background. The figure-ground response enhancement was present along the entire extent of the patch and was absent as soon as the receptive field was outside the patch. The strength of the effect had no relation with classical receptive field properties like orientation or direction selectivity or receptive field size. The response enhancement had a latency of 30-40 msec relative to the onset of the neuronal response itself. The results show that context modulation within primary visual cortex has a highly sophisticated nature, putting the image features the cells are responding to into their fully evaluated perceptual context.

900 citations


Journal ArticleDOI
29 Jun 1995-Nature
TL;DR: In the reorganized cortex the spike PS expanded, approximating the extent of the optical PS seen in normal cortex, and suggesting that reorganization was mediated by an unmasking of normally subthreshold activation to suprathreshold levels.
Abstract: The cortical 'point spread' (PS) is the area of cortex activated by a minimal visual stimulus. Here we use the PS to explore the functional role of lateral connectivity in normal cat primary visual cortex (V1) and its involvement in topographic reorganization of cortex following retinal lesions. We compared the distributions of PSs measured with optical recording, which reflects both spiking and subthreshold activity, with those measured with extracellular electrodes, which reveal spiking activity alone. The spiking PS represented only 5% of the area of activation shown in the optical PS, indicating that the remaining 95% was probably generated by subthreshold activation. The orientation dependence of the pattern of the subthreshold activation and its close match with orientation columns suggests that long-range horizontal connections radiating from the locus of spiking activity were responsible for the observed activation. The spike PS showed anisotropies and inhomogeneities that were related to the pattern of orientation columns and indicated distortions in the representation of visual space on the cortical surface. In the reorganized cortex the spike PS expanded, approximating the extent of the optical PS seen in normal cortex, and suggesting that reorganization was mediated by an unmasking of normally subthreshold activation to suprathreshold levels. The orientation map of the reorganized cortex showed a close match to that obtained before placing the lesion, despite the large shift in topography, supporting the idea that intrinsic horizontal connections were responsible for the remapping.

451 citations


Journal ArticleDOI
TL;DR: In this paper, the authors compared the course of topographic alterations in the primary visual cortex and dorsal lateral geniculate nucleus (LGN) of cats and monkeys, and found that the long-range intrinsic horizontal connections are a likely source of visual input into the reorganized cortical area.
Abstract: In primary sensory and motor cortex of adult animals, alteration of input from the periphery leads to changes in cortical topography. These changes can be attributed to processes that are intrinsic to the cortex, or can be inherited from alterations occurring at stages of sensory processing that are antecedent to the primary sensory cortical areas. In the visual system, focal binocular retinal lesions initially silence an area of cortex that represents the region of retina destroyed, but over a period of months this area recovers visually driven activity. The retinotopic map in the recovered area is altered, shifting its representation to the portion of retina immediately surrounding the lesion. This effectively shrinks the representation of the lesioned area of retina, and expands the representation of the lesion surround. To determine the loci along the visual pathway at which the reorganization takes place, we compared the course of topographic alterations in the primary visual cortex and dorsal lateral geniculate nucleus (LGN) of cats and monkeys. At a time when the cortical reorganization is complete, the silent area of LGN persists, indicating that changes in cortical topography are due to alterations that are intrinsic to the cortex. To explore the participation of thalamocortical afferents in the reorganization, we injected a series of retrogradely transported fluorescent tracers into reorganized and surrounding cortex of each animal. Our results show that the thalamocortical arbors do not extend beyond their normal lateral territory and that this physical dimension is insufficient to account for the reorganization. We suggest that the long-range intrinsic horizontal connections are a likely source of visual input into the reorganized cortical area.

321 citations


Journal ArticleDOI
TL;DR: The receptive field properties of cells in layers 2, 3, and 4 of area 17 (V1) of the monkey were studied quantitatively using colored and broad-band gratings, bars, and spots to suggest that most cells in these layers are selective for a number of stimulus attributes.
Abstract: The receptive field properties of cells in layers 2, 3, and 4 of area 17 (V1) of the monkey were studied quantitatively using colored and broad-band gratings, bars, and spots. Many cells in all regions studied responded selectively to stimulus orientation, direction, and color. Nearly all cells (95%) in layers 2 and 3 exhibited statistically significant orientation preferences (biases), most exhibited at least some color sensitivity, and many were direction sensitive. The degree of selectivity of cells in layers 2 and 3 varied continuously among cells; we did not find discrete regions containing cells sensitive to orientation and direction but not color, and vice versa. There was no relationship between the degree of orientation sensitivity of the cells studied and their degree of color sensitivity. There was also no obvious relationship between the receptive field properties studied and the cells' location relative to cytochrome oxidase-rich regions. Our findings are difficult to reconcile with the hypothesis that there is a strict segregation of cells sensitive to orientation, direction, and color in layers 2 and 3. In fact, the present results suggest the opposite since most cells in these layers are selective for a number of stimulus attributes.

310 citations


Journal ArticleDOI
01 Sep 1995-Neuron
TL;DR: It is shown that horizontal connections modulate both excitatory and inhibitory synaptic interactions between iso-orientation columns, and changing the stimulus intensity altered the balance of evoked excitation and inhibition without changing the columnar specificity of inputs.

227 citations


Journal ArticleDOI
TL;DR: A new way of scaling the strength of synaptic interaction with the size of the network is proposed: rather than scale the amplitude of the synapse, the neurotransmitter release probabilities with the number of inputs are scaled to keep the average input constant.
Abstract: We have explored a network model of cortical microcircuits based on integrate-and-fire neurons in a regime where the reset following a spike is small, recurrent excitation is balanced by feedback inhibition, and the activity is highly irregular. This regime cannot be described by a mean-field theory based on average activity levels because essential features of the model depend on fluctuations from the average. We propose a new way of scaling the strength of synaptic interaction with the size of the network: rather than scale the amplitude of the synapse we scale the neurotransmitter release probabilities with the number of inputs to keep the average input constant. This is consistent with the low transmitter release probability observed in a majority of hippocampal synapses. Another prominent feature of this regime is the ability of the network to switch rapidly between different states, as demonstrated in a model based on an orientation columns in the mammalian visual cortex. Both network and intrinsic ...

210 citations


Journal ArticleDOI
TL;DR: The results of these studies suggest that beyond the primary visual cortex (V1), information is not serially processed through successive cortical areas, but that it is simultaneously processed in several areas.

162 citations


Journal ArticleDOI
Yuzo M. Chino1, E L Smith rd1, Jon H. Kaas1, Y Sasaki1, Han Cheng1 
TL;DR: The results suggest that the striate cortical neurons reactivated during topographic reorganization are capable of sending functionally meaningful signals to more central structures provided that the visual scene contains relatively high contrast images.
Abstract: When neurons in primary visual cortex of adult cats and monkeys are deprived of their normal sources of activation by matching lesions in the two retinas, they are capable of acquiring new receptive fields based on inputs from regions of intact retina around the lesions. Although these "reactivated" neurons respond to visual stimuli, quantitative studies of their response characteristics have not been attempted. Thus, it is not known whether these neurons have normal or abnormal features that could contribute to or disrupt an analysis of a visual scene. In this study, we used extracellular single-unit recording methods to investigate their stimulus selectivity and responsiveness. Specifically, we measured the sensitivity of individual neurons to stimulus orientation, direction of drift, spatial frequency, and contrast. Over 98% of all units in the denervated zone of cortex acquired new receptive fields after 3 months of recovery. Newly activated units exhibited strikingly normal orientation tuning, direction selectivity, and spatial frequency tuning when high-contrast (< 40%) stimuli were used. However, contrast thresholds of most neurons were abnormally elevated, and the maximum response amplitude under optimal stimulus conditions was significantly reduced. The results suggest that the striate cortical neurons reactivated during topographic reorganization are capable of sending functionally meaningful signals to more central structures provided that the visual scene contains relatively high contrast images.

122 citations


Journal ArticleDOI
TL;DR: Electrophysiological recordings and neuroanatomical tracing techniques were used to study the connections between the primary somatosensory cortex and the vibrissal representation of the primary motor cortex in rodents, showing that sensory information is relayed to MI from the relevant whisker region in SI.
Abstract: The flow of information in the sensorimotor cortex may determine how somatic information modulates motor cortex neuronal activity during voluntary movement. Electrophysiological recordings and neuroanatomical tracing techniques were used to study the connections between the primary somatosensory cortex (SI) and the vibrissal representation of the primary motor cortex (MI) in rodents. Intracortical microstimulation (ICMS) was applied to the vibrissal region of the motor cortex to identify a site from which stimulation evoked movements of the vibrissae. Movements of only a single whisker were evoked by applying low-intensity stimulating current to particular locations within MI. A single injection of either horseradish peroxidase (HRP) or biocytin was made at the stimulus site in each animal, to retrogradely label cells in the somatosensory cortex. Receptive field (RF) responses were recorded from neurons in the barrel cortex to identify the sensory cortex representation of the same whisker that responded to ICMS. The site at which neurons responded predominately to manual stimulation of this particular vibrissa was marked by a small electrolytic lesion. The projection from the somatosensory cortex to the identified whisker representation in the motor cortex was determined by mapping the location of labeled neurons in tissue sections processed for either HRP or biocytin. The relationship of the labeled cells in SI to the barrel structures was determined from adjacent sections that were stained for cytochrome oxidase. In all cases, the barrel column associated with the relevant whisker contained labeled cells. Surrounding barrels also contained labeled cells, although fewer in number. Very few labeled cells were found in non-contiguous barrels. These results show that the SI to MI projection is somatotopically arranged, such that the sensory cortex representation of a whisker is morphologically connected to the motor cortex representation of the same whisker. Thus, sensory information is relayed to MI from the relevant whisker region in SI. Adjacent whisker regions also appear to relay somatic input, but presumably to a lesser degree. A second group of animals received single small injections of the anterograde tracer, Phaseolus vulgaris leucoagglutinin, to an electrophysiologically identified whisker representation in the sensory cortex. A single narrow column of labeled fibers was found in the motor cortex following such injections. Thus, the sensory cortex appears to relay somatic information from the vibrissae to restricted regions of the motor cortex in a somatotopically organized manner. Furthermore, the stimulus-evoked whisker movements suggest that certain features of the output map of the motor cortex are discretely organized. These input/output relationships suggest that complex information processing within the vibrissal sensorimotor cortex is highly organized.

93 citations


Journal ArticleDOI
TL;DR: This work proposes that binocular simple cells encode horizontal disparities in terms of phase at multiple spatial scales, and shows that receptive-field profiles for the left and right eyes are matched for cells that are tuned to horizontal orientations of image contours.
Abstract: Binocular neurons in the visual cortex are thought to form the neural substrate for stereoscopic depth perception. How are the receptive fields of these binocular neurons organized to encode the retinal position disparities that arise from binocular parallax? The conventional notion is that the two receptive fields of a binocular neuron have identical shapes, but are spatially offset from the point of retinal correspondence (zero disparity). We consider an alternative disparity-encoding scheme, in which the two receptive fields may differ in shape (or phase), but are centered at corresponding retinal locations. Using a reverse-correlation technique to obtain detailed spatiotemporal receptive-field maps, we provide support for the latter scheme. Specifically, we show that receptive-field profiles for the left and right eyes are matched for cells that are tuned to horizontal orientations of image contours. However, for neurons tuned to vertical orientations, the left and right receptive fields are predominantly dissimilar in shape. These results show that the striate cortex possesses a specialized mechanism for processing vertical contours, which carry the horizontal-disparity information needed for stereopsis. Thus, in a major modification to the traditional notion of the neural basis of stereopsis, we propose that binocular simple cells encode horizontal disparities in terms of phase at multiple spatial scales. Implications of this scheme are discussed with respect to the size-disparity correlation observed in psychophysical studies.

Journal ArticleDOI
TL;DR: The presence of cytochrome-oxidase blobs in the cat clearly demonstrates that they no longer can be considered a primate-specific feature of visual cortical organization.
Abstract: Cytochrome-oxidase blobs are central to two of the most influential ideas in contemporary visual neuroscience--cortical modularity and parallel processing pathways. In particular, the regular 2D array of cytochrome-oxidase-rich blobs in primate visual cortex is arguably the most compelling evidence for cortical modularity and has been hypothesized to mark a separate processing stream through the visual cortex. Although previously a variety of mammals have been studied, blobs have only been demonstrated in the visual cortex of primates, which has led to the conclusion that blobs represent a primate-specific feature of visual cortical organization. Here we demonstrate the presence of cytochrome-oxidase blobs in a nonprimate species. Throughout the full tangential extent of layers II-III in cat visual cortex the cytochrome-oxidase staining pattern is distinctly patchy, with the darkly stained blobs forming a regular 2D array. In addition, the blobs in cat visual cortex are functionally related to the underlying ocular dominance columns. The presence of cytochrome-oxidase blobs in the cat clearly demonstrates that they no longer can be considered a primate-specific feature of visual cortical organization.

Journal ArticleDOI
TL;DR: Infant animals find many of the organizational features described previously in adults, including patch-like linear zones, singularities, and fractures, in animals as young as 3 1/2 weeks of age, which imply that ocular dominance and orientation patterns change their relationship, and may even drift past one another, as young animals mature.
Abstract: Previous work has shown that small, stimulus-dependent changes in light absorption can be used to monitor cortical activity, and to provide detailed maps of ocular dominance and optimal stimulus orientation in the striate cortex of adult macaque monkeys (Blasdel & Salama, 1986; Ts'o et al., 1990). We now extend this approach to infant animals, in which we find many of the organizational features described previously in adults, including patch-like linear zones, singularities, and fractures (Blasdel, 1992b), in animals as young as 3 1/2 weeks of age. Indeed, the similarities between infant and adult patterns are more compelling than expected. Patterns of ocular dominance and orientation, for example, show many of the correlations described previously in adults, including a tendency for orientation specificity to decrease in the centers of ocular dominance columns, and for iso-orientation contours to cross the borders of ocular dominance columns at angles of 90 deg. In spite of these similarities, there are differences, one of which entails the strength of ocular dominance signals, which appear weaker in the younger animals and which increase steadily with age. Another, more striking, difference concerns the widths of ocular dominance columns, which increase by 20% during the first 3 months of life. Since the cortical surface area increases by a comparable amount, during the same time, this 20% expansion implies that growth occurs anisotropically, perpendicular to the ocular dominance columns, as the cortical surface expands. Since the observed patterns of orientation preference expand more slowly, at approximately half this rate, these results also imply that ocular dominance and orientation patterns change their relationship, and may even drift past one another, as young animals mature.

Journal ArticleDOI
TL;DR: Localized patterned visual stimulation was used in rats to investigate the feasibility of stimulus-dependent induction of the immediate early gene c-fos in neurons of cortical and subcortical visual centers of this mammal, suggesting that area AL is equivalent to the motion sensitive areas MT and PMLS of the monkey and cat.

Journal ArticleDOI
TL;DR: The location of retrogradely labeled cells within striate cortex of one hemisphere after placing restricted injections of one or more fluorescent tracers into selected sites in the contralateralstriate cortex is charted.
Abstract: In the rat, callosal cells occupy lateral as well as medial portions of striate cortex. In the region of the border between areas 17 and 18, which contains a representation of the vertical meridian of the visual field, cells projecting through the corpus callosum are concentrated throughout the depth of the cortex. In contrast, in medial portion of striate cortex, where peripheral portions of the visual field are represented, callosal cells are preferentially found in infragranular layers. These differences in topography and laminar distribution suggest that these callosal regions, referred to as medial and lateral callosal regions in the present study, subserve different functions. We explored this possibility by analyzing the patterns of callosal linkages in these two callosal regions. We charted the location of retrogradely labeled cells within striate cortex of one hemisphere after placing restricted injections of one or more fluorescent tracers into selected sites in the contralateral striate cortex. We found the medial and lateral callosal regions have distinctly different topographic organizations. Injections into medial striate cortex of one hemisphere produced labeled cells predominantly in mirror-symmetric loci in medial portions of contralateral striate cortex. The arrangement of these connections suggests that they mediate direct interactions between cortical regions representing visual fields located symmetrically on opposite sides of the vertical meridian of the visual field. In contrast, the mapping in the lateral callosal region is reversed: injections into the 17/18a border produced labeled fields located medial to the contralateral 17/18a border, while injections slightly medial to the 17/18a border produced labeled fields located at the contralateral 17/18a border.(ABSTRACT TRUNCATED AT 250 WORDS)

Journal ArticleDOI
Pasko Rakic1, Lidow1
TL;DR: The present results show that the monoamine receptors in primate visual cortex can establish and maintain distinct laminar and areal patterns in the absence of activity or molecular cues originated from the retina, and provide new insight into the cortical consequences of secondary congenital anophthalmia.
Abstract: Developmental mechanisms that regulate the areal and laminar distribution of various macromolecules, including neurotransmitter receptors in the cerebral cortex, are not known. In the present study, we examined the development of monoaminergic receptors in the rhesus monkey striate and peristriate visual cortex in the absence of input from the retina. Binocular enucleation was performed between embryonic days E60 and E81, prior to the ingrowth of geniculocortical fibers into the cortical plate and before genesis of the granular and supragranular layers of the visual cortex. The animals were delivered at term (E165) and sacrificed at 2 or 12 months of age, and their brains frozen and the occipital lobes cut at 20 microns in the coronal plane. Cortical binding of 3H-clonidine, 125I-pindolol, 3H-5-HT, 3H-ketanserin, 3H- spiperone, 3H-SCH23390, and 3H-prazosin that label various monoamine receptors were autoradiographically visualized and quantified using a computer imaging system. All radioligands displayed specific laminar patterns in the striate and prestriate areas in both groups of animals. The areal and laminar distribution in the anophthalmic monkeys was similar to that in the controls. Significantly, in all enucleated animals, just as in the controls, a particularly high density of 3H- clonidine and 3H-prazosin was observed in the sublayers of layer IV involved in color vision. The present results show that the monoamine receptors in primate visual cortex can establish and maintain distinct laminar and areal patterns in the absence of activity or molecular cues originated from the retina, and provide new insight into the cortical consequences of secondary congenital anophthalmia.

Journal ArticleDOI
TL;DR: It is concluded that in dark-reared cats, but not normal ones, the orientation and direction sensitivities of cells in the LGNd and visual cortex do not differ quantitatively or qualitatively, and during normal development intracortical mechanisms appear to expand upon and/or modify the weak orientation and Direction sensitivity of their inputs.
Abstract: Visual deprivation in early life profoundly affects the characteristic sensitivity of visual cortical cells to stimulus orientation and direction. Recently, relay cells in the lateral geniculate nucleus (LGNd) have been shown to exhibit significant degrees of orientation and direction sensitivity. The effects of visual deprivation upon these properties of subcortical cells are unknown. In this study cats were reared from birth to 6–12 months of age in total darkness; the orientation and direction sensitivities of area 17 (striate cortex) and LGNd cells were compared. All cells were studied using identical quantitative techniques and statistical tests designed to analyze distributions of angles. The results confirm previous work and indicate that the orientation and direction sensitivities of cells in area 17 are profoundly reduced by dark rearing. In marked contrast, these properties of LGNd relay cells are unaffected. The result is that, unlike in the normal cat, in dark-reared cats the orientation and direction sensitivities of cells in the LGNd and visual cortex do not differ. It is concluded that (1) the orientation and direction sensitivities of cortical cells contribute little, if at all, to the sensitivities of LGNd cells since LGNd cells exhibit normal sensitivities even though the cortical cells projecting to them exhibit greatly reduced sensitivities and (2) during normal development intracortical mechanisms appear to expand upon and/or modify the weak orientation and direction sensitivities of their inputs. These intracortical mechanisms depend upon normal visual experience since in dark-reared cats, but not normal ones, the orientation and direction sensitivities of cells in the LGNd and visual cortex do not differ quantitatively or qualitatively.

Journal ArticleDOI
TL;DR: Interocular transfer of the effect in binocular cortical receptive fields in the non-conditioned eye was comparable to that in the conditioned eye, suggesting that the expansion is due to mechanisms intrinsic to the cortex.

Journal ArticleDOI
TL;DR: It is shown that the mediolateral organization of callosal linkages differs markedly between medial and lateral regions of striate cortex in the rat, and fibers originating from medial regions of Striate cortex interconnect loci that are mirror‐symmetric with respect to the midsagittal plane.
Abstract: Lewis and Olavarria ([1995] J. Comp. Neurol. 361:119–137) showed that the mediolateral organization of callosal linkages differs markedly between medial and lateral regions of striate cortex in the rat. Thus, callosal fibers originating from medial regions of striate cortex interconnect loci that are mirror-symmetric with respect to the midsagittal plane. In contrast, fibers from lateral regions of striate cortex show a reversed pattern of connections: tracer injections into the 17/18a border produce retrograde cell labeling in regions medial to the contralateral 17/18a border, whereas injections placed somewhat medial to the 17/18a border label cells located at the contralateral 17/18a border. Based on the interpretation that callosal fibers from lateral striate cortex connect retinotopically corresponding loci (Lewis and Olavarria [1995] J. Comp. Neurol. 361:119–137) we propose here that the development of the reversed pattern of connections in lateral portions of striate cortex is guided by activity-dependert cues originating from spontaneously active ganglion cells in temporal retina. In the present study we have attempted to falsify this hypothesis by investigating the effects of neonatal bilateral enucleation on the organization of callosal linkages in striate cortex of the rat. Once enucleated rats reached adulthood, we studied the mediolateral organization of callosal connections by placing small injections of different fluorescent tracers into different loci within medial and lateral striate cortex. The analysis of the distribution of retrogradely labeledcallosal cells indicated that connections from lateral portions of striate cortex were no longer organized in a reversed fashion, rather, they resembled the mirror image pattern normally found in the medial callosal region, i. e., injections at the 17/18a border produced labeled cells at the opposite 17/18a border, whereas injections into slightly more medial regions produced labeled cells in the opposite, mirror-symmetric location. In addition, we found that enucleation does not alter the organization of callosal linkages in medial portions of striate cortex. Thus, by showing that enucleation significantly changes the pattern of connections from lateral portions of striate cortex, the present study does not falsify, but rather strengthens the hypothesis that interhemispheric correlated activity driven from the temporal retinal crescent guides the normal development of reversed callosal linkages in lateral portions of rat striate cortex. Furthermore, the present study shows that, in the absence of the eyes, the pattern of callosal linkages in lateral portions of striate cortex resembles the mirror image pattern normally found only in medial striate cortex. © 1995 Wiley-Liss, Inc.

Journal ArticleDOI
TL;DR: A simple pattern formation process based on Hebbian learning and competitive interactions within cortex is investigated, which generates spatial representations of afferent information which strongly resemble patterns of response properties of neurons commonly called brain maps.

Book ChapterDOI
01 Jan 1995
TL;DR: Remains of visual function in patients who suffer extensive field losses associated with lesions of the striate cortex are discussed, including a patient, GY, who can detect transient light stimuli presented within the ‘blind’ region of his visual field but cannot identify certain colours.
Abstract: The organisation of visual areas in the macaque cortex suggests that different attributes of the visual image are registered in modular fashion. Thus neurones responsive to a particular attribute such as movement are associated with histologically identifiable regions of the visual cortex. Evidence for such an arrangement in humans has been obtained by functional mapping using positron emission tomography or functional magnetic resonance imaging, although species differences between the locations of areas with equivalent functional specialisation have been noted. Results of studies on human patients with cortical lesions are also consistent with the existence of functional specialisation in different visual areas. In this article, I discuss residual visual function in patients who suffer extensive field losses associated with lesions of the striate cortex. I examine in detail data for a patient, GY, who can detect transient light stimuli presented within the ‘blind’ region of his visual field. His responses to such stimuli reveal that he can discriminate between transient stimuli which differ in flicker rate or speed of movement, and he can also identify certain colours. He cannot, however, identify spatial patterns presented to his ‘blind’ field. I examine the neuronal mechanisms responsible for these responses and I discuss them with reference to the organisation of the visual cortex.

Journal ArticleDOI
TL;DR: The responses to flashing single light bars of different orientation and to cruciform images (CI) were compared in 9 neurons of the cat striate cortex possessing high specific sensitivity to CI, during local adaptation of various receptive field (RF) zones.
Abstract: The responses to flashing single light bars of different orientation and to cruciform images (CI) were compared in 9 neurons of the cat striate cortex possessing high specific sensitivity to CI, during local adaptation of various receptive field (RF) zones. In most neurons, a two- to threefold reduction in the response to CI with a constantly present bar of optimum or orthogonal orientation, if compared with a response to the figure consisting of two flashing bars, was found. Responses to the CI including an adaptation bar were often increased, if compared with those observed at usual orientation tuning. The role of a cross-orientation inhibition in the formation of a selective sensitivity to CI in the neurons of the visual cortex is discussed.