scispace - formally typeset
Search or ask a question
Topic

Orientation column

About: Orientation column is a research topic. Over the lifetime, 1142 publications have been published within this topic receiving 130169 citations.


Papers
More filters
Book
01 Dec 1983
TL;DR: The Visual System of Cat and Monkey Compared, a comparison of the Basic Layout of the Visual System in Cat, Owl Monkey, and Rhesus Monkey, reveals a similar structure to the Retinotopic Organization in the Primary Complex.
Abstract: 1 The Visual System of Cat and Monkey Compared.- 1.1 The Basic Layout of the Visual System in Cat, Owl Monkey, and Rhesus Monkey.- 1.1.1 The Retina.- 1.1.2 The Optic Chiasm and Optic Tract.- 1.1.3 The Dorsal Lateral Geniculate Nucleus (dLGN).- 1.1.4 Visual Cortex.- 1.1.5 Pulvinar.- 1.1.6 Callosal Connections.- 1.2 Quantitative Aspects of the Retino-Geniculo-Cortical Projections.- 1.2.1 The Overall Numbers of Cells in the Visual Pathway.- 1.2.2 Distribution of Retinal Cell Populations.- 1.2.3 Magnification Factors.- 1.3 Conclusion.- 2 The Visual Cortical Areas of the Cat.- 2.1 Description of the Visual Cortical Areas.- 2.1.1 Area 17: The Prototype of Visual Cortical Areas.- 2.1.2 Areas 18 and 19.- 2.1.3 The Lateral Suprasylvian Areas.- 2.1.4 Areas 20 and 21.- 2.1.5 Additional Visual Areas?.- 2.2 The Levels of Processing in the Visual Cortical System of the Cat.- 2.3 Additional Observations on the Retinotopic Organization in the Primary Complex.- 2.3.1 Variability of the 3 Cortical Maps.- 2.3.2 RF Scatter.- 2.3.3 The 17-18 Border and the Question of the Naso-Temporal Overlap.- 2.3.4 The 18-19 Border and the Question of the Visual Field Islands.- 2.4 Conclusion.- 3 Afferent Projections to Areas 17, 18, 19 of the Cat: Evidence for Parallel Input.- 3.1 The Relay of Retinal Afferents: The Dorsal Lateral Geniculate Nuclear Complex.- 3.2 The Geniculocortical Projection.- 3.3 Functional Streams in the Retino-Geniculocortical Projection.- 3.3.1 Functional Properties of Retinal and Geniculate X, Y, W Cells.- 3.3.2 Correlation with Retinal Morphology.- 3.3.3 Separation of Functional Streams at LGN Level.- 3.3.4 Correlation with LGN Morphological Types.- 3.3.5 Distribution of Functional Streams in dLGN Nuclear Complex.- 3.3.6 Input to Different Areas of Primary Visual Complex.- 3.4 Physiological Identification of the Functional Type of Afferents to Areas 17, 18 and 19.- 3.5 The Termination of Geniculate Afferents in the Visual Cortex.- 3.6 Other Subcortical Afferents: Pulvinar-Lateralis Posterior Complex, Intralaminar Nuclei, Claustrum, and Brainstem.- 3.7 The Ipsilateral Corticocortical Connections.- 3.8 The Connections Through the Corpus Callosum.- 3.9 Conclusion.- 4 Receptive Field Organization in Areas 17, 18 and 19 of the Cat.- 4.1 Twenty Years with the Simple-Complex-Hypercomplex Scheme.- 4.2 Criteria for Classifying Cortical RFs.- 4.2.1 The ON-OFF Overlap or the Parcellation of the RF into Subregions.- 4.2.2 Position Test.- 4.2.3 RF Dimensions.- 4.2.4 End-Stopping or the Hypercomplex Property.- 4.3 The A, B, C, S Scheme.- 4.3.1 Properties and Distribution of Cell Types.- 4.3.2 The S and A Families.- 4.3.3 Responses to Other Stimuli.- 4.4 Correspondence of the A, B, C, S Scheme with Other Classification Schemes.- 4.5 Conclusion.- 5 Parameter Specificity of Visual Cortical Cells and Coding of Visual Parameters.- 5.1 The Tuned Cells as Bandpass Filters: The Multichannel Representation of a Parameter.- 5.2 Are All Tuned Cells Simple (Passive) Bandpass Filters or Are Some of Them Active Filters?.- 5.3 Cells with Thresholds as High-Pass Filters: Single or Multichannel Representation of a Parameter.- 5.4 Conclusion.- 6 Influence of Luminance and Contrast on Cat Visual Cortical Neurons.- 6.1 Contrast-Response Curves Obtained with Sinusoidal Gratings.- 6.2 Contrast-Response Curves Obtained with Slits.- 6.3 The Extreme Contrast Sensitivity at the 18-19 Border.- 6.4 Influence of Contrast and Luminance on Other Response Properties.- 6.5 Conclusion.- 7 Coding of Spatial Parameters by Cat Visual Cortical Neurons: Influence of Stimulus Orientation, Length, Width, and Spatial Frequency.- 7.1 Orientation Tuning of Cortical Cells.- 7.1.1 Definitions and Criteria.- 7.1.2 Quantitative Determinations: Orientation-Response Curves.- 7.1.3 Qualitative Determination: Hand-Plotting.- 7.1.4 Distribution of Preferred Orientations.- 7.1.5 Orientation Columns.- 7.1.6 Conclusion.- 7.2 Influence of Stimulus Length on Cortical Cells.- 7.3 Selectivity of Cortical Neurons for Spatial Frequency and Stimulus Width.- 7.3.1 Selectivity for Spatial Frequency.- 7.3.2 Spatial Frequency and Coding of Stimulus Dimensions.- 7.3.3 Linearity of Cortical Cells.- 7.3.4 The Visual Cortex as a Fourier Analyzer.- 7.3.5 Spatial Frequency: Conclusion.- 7.4 Spatial Parameters: Conclusion.- 8 Coding of Spatio-Temporal Parameters by Cat Visual Cortical Neurons: Influence of Stimulus Velocity Direction and Amplitude of Movement.- 8.1 Influence of Stimulus Velocity.- 8.2 Influence of the Direction of Movement.- 8.3 Influence of Stimulus Movement Amplitude.- 8.4 Conclusion.- 9 Binocular Interactions in Cat Visual Cortical Cells and Coding of Parameters Involved in Static and Dynamic Depth Perception.- 9.1 The Binocularity of Cortical Cells and the Ocular Dominance Scheme.- 9.2 Position Disparity Tuning Curves and the Coding of Static Depth.- 9.3 Orientation Disparity, Another Mechanism for Static Depth Discrimination?.- 9.4 Neuronal Mechanisms Underlying Dynamic Depth Perception (Motion in Depth).- 9.5 Conclusion.- 10 The Output of the Cat Visual Cortex.- 10.1 The Projections of Layer V to the Superior Colliculus, Pons, Pretectum, and Pulvinar-LP Complex.- 10.2 The Projections of Layer VI to the dLGN and the Claustrum.- 10.3 The Commissural Projections.- 10.4 The Associative Corticocortical Projections.- 10.5 Conclusion.- 11 Correlation Between Geniculate Afferents and Visual Cortical Response Properties in the Cat.- 11.1 Electrical Stimulation of the Visual Pathways.- 11.2 The Question of ON or OFF Cell Input to Cortical S Cells.- 11.3 Other Attempts to Identify the LGN Input to Cortical Cells.- 11.4 Conclusion.- 12 Intracortical Mechanisms Underlying Properties of Cat Visual Cortical Cells.- 12.1 The Role of Intracortical Inhibition.- 12.1.1 Orientation Selectivity.- 12.1.2 Direction Selectivity.- 12.1.3 End-Stopping.- 12.1.4 Ocular Dominance.- 12.1.5 Velocity Upper Cut-Off.- 12.1.6 Absence of Response to Two-Dimensional Noise.- 12.2 Properties of the Intracortical Inhibitions.- 12.3 The Structural Counterpart of Inhibitions.- 12.4 Conclusion.- 13 Non-Visual Influences on Cat Visual Cortex.- 13.1 Non-Visual Sensory Inputs to the Visual Cortex.- 13.2 Influence of Eye Movements on Visual Cortical Cells.- 13.3 The Influence of Sleep and Anesthesia.- 14 Response Properties of Monkey Striate Neurons.- 14.1 Retinotopic Organization of Area 17.- 14.2 The Input-Output Relations of Monkey Striate Cortex.- 14.3 Receptive Field Organization and Size.- 14.4 Color Specificity in Monkey Striate Cortex.- 14.5 Influence of Light Intensity and Contrast on Monkey Striate Neurons.- 14.6 Influence of Spatial Parameters.- 14.7 Influence of Spatio-Temporal Parameters.- 14.8 Ocular Dominance Distribution and Depth Sensitivity.- 14.9 Columnar Organization and Functional Architecture of Striate Cortex.- 14.10 Correlation Between Response Properties and Afferent Input.- 14.11 Conclusion.- 15 Conclusion: Signification of Visual Cortical Function in Perception.- 15.1 Operating Principles in Cat Visual Cortex.- 15.1.1 Retinotopic Organization.- 15.1.2 Filtering.- 15.1.3 "Columnar" Organization.- 15.1.4 Distributed Processing in the Primary Complex.- 15.1.5 Changes with Eccentricity.- 15.1.6 Parallel Streams Within each Area.- 15.2 The Cat and Monkey Visual Cortex as a Model: The Question of the Relationship Between Animal Physiology and Human Visual Perception.- 15.3 The Role of the Primary Visual Cortex in Visual Perception: The Significance of Parameter Specificities for Object Recognition.- References.

420 citations

Journal ArticleDOI
TL;DR: The visual cortex was studied in the mouse by recording from single units, and a topographic map of the visual field was constructed, and more than two‐thirds of cells could also be driven through the ipsilateral eye.
Abstract: The visual cortex was studied in the mouse (C57 Black/6J strain) be recording from single units, and a topographic map of the visual field was constructed. Forty-five percent of the neurons in striate cortex responded best to oriented line stimuli moving over their receptive fields; they were classified as simple (17%), complex (25%) and hypercomplex (3%). Of all preferred orientations horizontal was most common. Fifty-five percent of recpetive fields were circularly symmetric: these were on-center (25%), off-center (7%) and homogeneous on-off in type (23%). Optimal stimulus velocities were much higher than those reported in the cat, mostly varying between 20 degrees and 300 degrees/sec. The field of vision common to the two eyes projected to more than one-third of the striate cortex. Although the contralateral eye provided the dominating influence on cells in this binocular area, more than two-thirds of cells could also be driven through the ipsilateral eye. The topography of area 17 was similar to that found in other mammals: the upper visual field projected posteriorly, the most nasal part mapped onto the lateral border. Here the projection did not end at the vertical meridian passing through the animal's long axis, but proceeded for at least 10 degrees into the ipsilateral hemifield of vision, so that at least 20 degrees of visual field were represented in both hemispheres. The magnification in area 17 was rather uniform throughout the visual field. In an area lateral to area 17 (18a) the fields were projected in condensed mirror image fashion with respect to the arrangement of area 17. Medial to area 17 a third visual area (area 18) was again related to 17 as a condensed mirror image.

413 citations

Journal ArticleDOI
TL;DR: The concept of corresponding retinal points was examined in terms of the binocular receptive fields of neurons in Area 17 of the cerebral cortex of the cat and the attempt has been made to establish the parameters of the receptive field disparities that occur within 5° of the visual axis.
Abstract: The concept of corresponding retinal points was examined in terms of the binocular receptive fields of neurons in Area 17 of the cerebral cortex of the cat. Only a proportion of the binocular receptive field pairs can be accurately superimposed at the one time in a given plane. The fields which are not corresponding are said to show receptive field disparity. The attempt has been made to establish, on a quantitative basis, the parameters of the receptive field disparities that occur within 5° of the visual axis. A new method was used for defining the zero (vertical) meridian. Very effective paralysis of the extraocular muscles was achieved and the very small residual eye movements that occurred were regularly monitored so that corrections could be applied to the plotted positions of the receptive field pairs. The distribution of the receptive field disparities about the position of maximal correspondence has a range of about ±1.2° (S.D. 0.6°) in both the horizontal and vertical directions for fields in the vicinity of the visual axis. Panum's fusional area may represent the extent to which receptive fields in the one eye, all with the same visual direction, are linked to fellow members of a pair in the other eye over a range of receptive field disparities. A naso-temporal overlap of receptive fields occurs which is probably little if any more than can be accounted for on the basis of the disparity of receptive fields lying along the zero (vertical) meridian. When the extraocular muscles are paralyzed the eyes diverge and the binocular receptive field pairs are separated on the tangent screen. The distribution of the horizontal and vertical separations of the receptive field pairs have been examined.

401 citations

Journal ArticleDOI
TL;DR: The distinctness of the spatially segregated pattern of innervation in the cortex of neonates indicates that the columnar organization of association-fiber systems in the frontal and limbic cortex is achieved before or shortly after birth.

399 citations

Journal ArticleDOI
TL;DR: Autoradiographs of visual cortex showed that Old World primates have separate eye inputs in striate cortex, whereas New World monkeys have overlapping or non‐separated eye inputs.
Abstract: Pathways between the dorsal lateral geniculate nucleus (dLGN) and visual cortex in Old World (Macaca, Papio, Erythrocebus, Cercopithecus) and New World (Saimiri, Cebus) primates were studied after injections of horseradish peroxidase and H3 or S35 amino acids into the dLGN or visual cortex. Trans-synaptic autoradiography was also used to study these pathways after an injection of H3 proline-fucose into one eye. The subsequent autoradiographs of visual cortex showed that Old World primates have separate eye inputs (ocular dominance columns) in striate cortex, whereas New World monkeys have overlapping or non-separated eye inputs. In both primate groups the geniculocortical input to layer IVA formed a pattern which resembled a honeycomb in tangential sections, unlike the solidly labeled layer IVC. Also common to the two primate groups was a projection from dLGN to layer VI. There was no dLGN projection to any prestriate area in any of the primates. However, after an injection limited to the prestriate cortex of Macaca, light autoradiographic labeling was seen in the interlaminar zones and the magnocellular and S laminae, demonstrating a prestriate-dLGN pathway. Our results indicate that the primate visual system differs significantly from the cat in having no dLGN projection to area 18. There are also significant differences between primates in the level at which the possibility of binocularity (of an excitatory nature) first occurs in the striate cortex because in the species studied thus far with neuroanatomical methods, Old World primates have ocular dominance columns in layer IV but most New World monkeys lack them.

390 citations


Network Information
Related Topics (5)
Visual cortex
18.8K papers, 1.2M citations
89% related
Neuron
22.5K papers, 1.3M citations
85% related
Synaptic plasticity
19.3K papers, 1.3M citations
84% related
Hippocampal formation
30.6K papers, 1.7M citations
83% related
NMDA receptor
24.2K papers, 1.3M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231
20223
20212
20208
20192
20189