scispace - formally typeset
Search or ask a question
Topic

Orientation column

About: Orientation column is a research topic. Over the lifetime, 1142 publications have been published within this topic receiving 130169 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that isolated neurons found within the degenerated region survivestriate cortex damage because they project to an extrastriate visual area, and not because their terminals depart from the otherwise strict topographic representation of the lateral geniculate nucleus on to striate cortex.
Abstract: In four monkeys with long-standing partial ablation of the striate cortex pellets of horseradish peroxidase were placed in either the striate cortex immediately adjacent to the ablation, or in the extrastriate cortex of the ventral prelunate gyrus, i.e. in visual area V4. We examined the dorsal lateral geniculate nucleus to see whether surviving neurons, within the region that shows retrograde degeneration as a result of the cortical lesion, project to remaining striate cortex and/or to extrastriate cortex. Neurons labelled from extrastriate cortex were found throughout the degenerated region, whereas neurons labelled from striate cortex were confined to the border between the normal and degenerated region of the nucleus. This shows that isolated neurons found within the degenerated region survive striate cortex damage because they project to an extrastriate visual area, and not because their terminals depart from the otherwise strict topographic representation of the lateral geniculate nucleus on to striate cortex.

93 citations

Journal ArticleDOI
TL;DR: The class of neurons within the visual cortex of normal adult cats that has the smallest receptive fields and that responds only to low rates of stimulus motion responds preferentially to lines oriented about either the horizontal axis or the vertical axis.
Abstract: The class of neurons within the visual cortex of normal adult cats that has the smallest receptive fields (less than or equal to 2.25 degrees2) and that responds only to low rates of stimulus motion (less than or equal to 50 degrees / sec) responds preferentially to lines oriented about either the horizontal axis (+/-22.5 degrees) or the vertical axis (+/-22.5 degrees). In animals reared without exposure to patterned visual stimulation, many of these cells display orientation preferences but are activated monocularly. In contrast, in normal animals, neurons that have larger receptive fields or that respond to higher rates of stimulus motion do not exhibit a similar bias in the distribution of their orientation preferences. Cells of this type, studied in animals reared without exposure to patterned visual stimuli, are activated binocularly but do not display orientation preferences.

93 citations

Journal ArticleDOI
TL;DR: Electrophysiological recordings and neuroanatomical tracing techniques were used to study the connections between the primary somatosensory cortex and the vibrissal representation of the primary motor cortex in rodents, showing that sensory information is relayed to MI from the relevant whisker region in SI.
Abstract: The flow of information in the sensorimotor cortex may determine how somatic information modulates motor cortex neuronal activity during voluntary movement. Electrophysiological recordings and neuroanatomical tracing techniques were used to study the connections between the primary somatosensory cortex (SI) and the vibrissal representation of the primary motor cortex (MI) in rodents. Intracortical microstimulation (ICMS) was applied to the vibrissal region of the motor cortex to identify a site from which stimulation evoked movements of the vibrissae. Movements of only a single whisker were evoked by applying low-intensity stimulating current to particular locations within MI. A single injection of either horseradish peroxidase (HRP) or biocytin was made at the stimulus site in each animal, to retrogradely label cells in the somatosensory cortex. Receptive field (RF) responses were recorded from neurons in the barrel cortex to identify the sensory cortex representation of the same whisker that responded to ICMS. The site at which neurons responded predominately to manual stimulation of this particular vibrissa was marked by a small electrolytic lesion. The projection from the somatosensory cortex to the identified whisker representation in the motor cortex was determined by mapping the location of labeled neurons in tissue sections processed for either HRP or biocytin. The relationship of the labeled cells in SI to the barrel structures was determined from adjacent sections that were stained for cytochrome oxidase. In all cases, the barrel column associated with the relevant whisker contained labeled cells. Surrounding barrels also contained labeled cells, although fewer in number. Very few labeled cells were found in non-contiguous barrels. These results show that the SI to MI projection is somatotopically arranged, such that the sensory cortex representation of a whisker is morphologically connected to the motor cortex representation of the same whisker. Thus, sensory information is relayed to MI from the relevant whisker region in SI. Adjacent whisker regions also appear to relay somatic input, but presumably to a lesser degree. A second group of animals received single small injections of the anterograde tracer, Phaseolus vulgaris leucoagglutinin, to an electrophysiologically identified whisker representation in the sensory cortex. A single narrow column of labeled fibers was found in the motor cortex following such injections. Thus, the sensory cortex appears to relay somatic information from the vibrissae to restricted regions of the motor cortex in a somatotopically organized manner. Furthermore, the stimulus-evoked whisker movements suggest that certain features of the output map of the motor cortex are discretely organized. These input/output relationships suggest that complex information processing within the vibrissal sensorimotor cortex is highly organized.

93 citations


Network Information
Related Topics (5)
Visual cortex
18.8K papers, 1.2M citations
89% related
Neuron
22.5K papers, 1.3M citations
85% related
Synaptic plasticity
19.3K papers, 1.3M citations
84% related
Hippocampal formation
30.6K papers, 1.7M citations
83% related
NMDA receptor
24.2K papers, 1.3M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231
20223
20212
20208
20192
20189