scispace - formally typeset
Topic

Orientation (computer vision)

About: Orientation (computer vision) is a(n) research topic. Over the lifetime, 17196 publication(s) have been published within this topic receiving 358181 citation(s).


Papers
More filters
Journal ArticleDOI
Roger Y. Tsai1
01 Aug 1987
TL;DR: In this paper, a two-stage technique for 3D camera calibration using TV cameras and lenses is described, aimed at efficient computation of camera external position and orientation relative to object reference coordinate system as well as the effective focal length, radial lens distortion, and image scanning parameters.
Abstract: A new technique for three-dimensional (3D) camera calibration for machine vision metrology using off-the-shelf TV cameras and lenses is described. The two-stage technique is aimed at efficient computation of camera external position and orientation relative to object reference coordinate system as well as the effective focal length, radial lens distortion, and image scanning parameters. The two-stage technique has advantage in terms of accuracy, speed, and versatility over existing state of the art. A critical review of the state of the art is given in the beginning. A theoretical framework is established, supported by comprehensive proof in five appendixes, and may pave the way for future research on 3D robotics vision. Test results using real data are described. Both accuracy and speed are reported. The experimental results are analyzed and compared with theoretical prediction. Recent effort indicates that with slight modification, the two-stage calibration can be done in real time.

5,771 citations

Book
03 Jan 1992
TL;DR: A new technique for three-dimensional camera calibration for machine vision metrology using off-the-shelf TV cameras and lenses using two-stage technique has advantage in terms of accuracy, speed, and versatility over existing state of the art.
Abstract: A new technique for three-dimensional (3D) camera calibration for machine vision metrology using off-the-shelf TV cameras and lenses is described. The two-stage technique is aimed at efficient computation of camera external position and orientation relative to object reference coordinate system as well as the effective focal length, radial lens distortion, and image scanning parameters. The two-stage technique has advantage in terms of accuracy, speed, and versatility over existing state of the art. A critical review of the state of the art is given in the beginning. A theoretical framework is established, supported by comprehensive proof in five appendixes, and may pave the way for future research on 3D robotics vision. Test results using real data are described. Both accuracy and speed are reported. The experimental results are analyzed and compared with theoretical prediction. Recent effort indicates that with slight modification, the two-stage calibration can be done in real time.

5,697 citations

Journal ArticleDOI
TL;DR: In this article, the authors categorize and evaluate face detection algorithms and discuss relevant issues such as data collection, evaluation metrics and benchmarking, and conclude with several promising directions for future research.
Abstract: Images containing faces are essential to intelligent vision-based human-computer interaction, and research efforts in face processing include face recognition, face tracking, pose estimation and expression recognition. However, many reported methods assume that the faces in an image or an image sequence have been identified and localized. To build fully automated systems that analyze the information contained in face images, robust and efficient face detection algorithms are required. Given a single image, the goal of face detection is to identify all image regions which contain a face, regardless of its 3D position, orientation and lighting conditions. Such a problem is challenging because faces are non-rigid and have a high degree of variability in size, shape, color and texture. Numerous techniques have been developed to detect faces in a single image, and the purpose of this paper is to categorize and evaluate these algorithms. We also discuss relevant issues such as data collection, evaluation metrics and benchmarking. After analyzing these algorithms and identifying their limitations, we conclude with several promising directions for future research.

3,805 citations

Journal ArticleDOI
John Daugman1
TL;DR: Evidence is presented that the 2D receptive-field profiles of simple cells in mammalian visual cortex are well described by members of this optimal 2D filter family, and thus such visual neurons could be said to optimize the general uncertainty relations for joint 2D-spatial-2D-spectral information resolution.
Abstract: Two-dimensional spatial linear filters are constrained by general uncertainty relations that limit their attainable information resolution for orientation, spatial frequency, and two-dimensional (2D) spatial position. The theoretical lower limit for the joint entropy, or uncertainty, of these variables is achieved by an optimal 2D filter family whose spatial weighting functions are generated by exponentiated bivariate second-order polynomials with complex coefficients, the elliptic generalization of the one-dimensional elementary functions proposed in Gabor’s famous theory of communication [ J. Inst. Electr. Eng.93, 429 ( 1946)]. The set includes filters with various orientation bandwidths, spatial-frequency bandwidths, and spatial dimensions, favoring the extraction of various kinds of information from an image. Each such filter occupies an irreducible quantal volume (corresponding to an independent datum) in a four-dimensional information hyperspace whose axes are interpretable as 2D visual space, orientation, and spatial frequency, and thus such a filter set could subserve an optimally efficient sampling of these variables. Evidence is presented that the 2D receptive-field profiles of simple cells in mammalian visual cortex are well described by members of this optimal 2D filter family, and thus such visual neurons could be said to optimize the general uncertainty relations for joint 2D-spatial–2D-spectral information resolution. The variety of their receptive-field dimensions and orientation and spatial-frequency bandwidths, and the correlations among these, reveal several underlying constraints, particularly in width/length aspect ratio and principal axis organization, suggesting a polar division of labor in occupying the quantal volumes of information hyperspace. Such an ensemble of 2D neural receptive fields in visual cortex could locally embed coarse polar mappings of the orientation–frequency plane piecewise within the global retinotopic mapping of visual space, thus efficiently representing 2D spatial visual information by localized 2D spectral signatures.

3,294 citations

Journal ArticleDOI
TL;DR: A fully automatic registration method to map volumetric data into stereotaxic space that yields results comparable with those of manually based techniques and therefore does not suffer the drawbacks involved in user intervention.
Abstract: Objective In both diagnostic and research applications, the interpretation of MR images of the human brain is facilitated when different data sets can be compared by visual inspection of equivalent anatomical planes. Quantitative analysis with predefined atlas templates often requires the initial alignment of atlas and image planes. Unfortunately, the axial planes acquired during separate scanning sessions are often different in their relative position and orientation, and these slices are not coplanar with those in the atlas. We have developed a completely automatic method to register a given volumetric data set with Talairach stereotaxic coordinate system. Materials and methods The registration method is based on multi-scale, three-dimensional (3D) cross-correlation with an average (n > 300) MR brain image volume aligned with the Talariach stereotaxic space. Once the data set is re-sampled by the transformation recovered by the algorithm, atlas slices can be directly superimposed on the corresponding slices of the re-sampled volume. the use of such a standardized space also allows the direct comparison, voxel to voxel, of two or more data sets brought into stereotaxic space. Results With use of a two-tailed Student t test for paired samples, there was no significant difference in the transformation parameters recovered by the automatic algorithm when compared with two manual landmark-based methods (p > 0.1 for all parameters except y-scale, where p > 0.05). Using root-mean-square difference between normalized voxel intensities as an unbiased measure of registration, we show that when estimated and averaged over 60 volumetric MR images in standard space, this measure was 30% lower for the automatic technique than the manual method, indicating better registrations. Likewise, the automatic method showed a 57% reduction in standard deviation, implying a more stable technique. The algorithm is able to recover the transformation even when data are missing from the top or bottom of the volume. Conclusion We present a fully automatic registration method to map volumetric data into stereotaxic space that yields results comparable with those of manually based techniques. The method requires no manual identification of points or contours and therefore does not suffer the drawbacks involved in user intervention such as reproducibility and interobserver variability.

3,206 citations


Network Information
Related Topics (5)
Segmentation
63.2K papers, 1.2M citations
82% related
Pixel
136.5K papers, 1.5M citations
79% related
Image segmentation
79.6K papers, 1.8M citations
78% related
Image processing
229.9K papers, 3.5M citations
77% related
Feature (computer vision)
128.2K papers, 1.7M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202212
2021535
2020771
2019830
2018727
2017691