scispace - formally typeset
Search or ask a question
Topic

Orientation (computer vision)

About: Orientation (computer vision) is a research topic. Over the lifetime, 17196 publications have been published within this topic receiving 358181 citations.


Papers
More filters
Proceedings ArticleDOI
01 Sep 2009
TL;DR: A region-based model which combines appearance and scene geometry to automatically decompose a scene into semantically meaningful regions and which achieves state-of-the-art performance on the tasks of both multi-class image segmentation and geometric reasoning.
Abstract: High-level, or holistic, scene understanding involves reasoning about objects, regions, and the 3D relationships between them. This requires a representation above the level of pixels that can be endowed with high-level attributes such as class of object/region, its orientation, and (rough 3D) location within the scene. Towards this goal, we propose a region-based model which combines appearance and scene geometry to automatically decompose a scene into semantically meaningful regions. Our model is defined in terms of a unified energy function over scene appearance and structure. We show how this energy function can be learned from data and present an efficient inference technique that makes use of multiple over-segmentations of the image to propose moves in the energy-space. We show, experimentally, that our method achieves state-of-the-art performance on the tasks of both multi-class image segmentation and geometric reasoning. Finally, by understanding region classes and geometry, we show how our model can be used as the basis for 3D reconstruction of the scene.

770 citations

Journal ArticleDOI
TL;DR: The algorithm appears to be more effective than previous techniques for two key reasons: 1) the gradient orientation is used as the initial organizing criterion prior to the extraction of straight lines, and 2) the global context of the intensity variations associated with a straight line is determined prior to any local decisions about participating edge elements.
Abstract: This paper presents a new approach to the extraction of straight lines in intensity images. Pixels are grouped into line-support regions of similar gradient orientation, and then the structure of the associated intensity surface is used to determine the location and properties of the edge. The resulting regions and extracted edge parameters form a low-level representation of the intensity variations in the image that can be used for a variety of purposes. The algorithm appears to be more effective than previous techniques for two key reasons: 1) the gradient orientation (rather than gradient magnitude) is used as the initial organizing criterion prior to the extraction of straight lines, and 2) the global context of the intensity variations associated with a straight line is determined prior to any local decisions about participating edge elements.

742 citations

Proceedings Article
01 Jan 2003
TL;DR: In this article, the authors use object recognition techniques based on invariant local features to select matching images, and a probabilistic model for verification, which is insensitive to the ordering, orientation, scale and illumination of the images.
Abstract: The problem considered in this paper is the fully automatic construction of panoramas. Fundamentally, this problem requires recognition, as we need to know which parts of the panorama join up. Previous approaches have used human input or restrictions on the image sequence for the matching step. In this work we use object recognition techniques based on invariant local features to select matching images, and a probabilistic model for verification. Because of this our method is insensitive to the ordering, orientation, scale and illumination of the images. It is also insensitive to 'noise' images which are not part of the panorama at all, that is, it recognises panoramas. This suggests a useful application for photographers: the system takes as input the images on an entire flash card or film, recognises images that form part of a panorama, and stitches them with no user input whatsoever.

738 citations

Journal ArticleDOI
TL;DR: This paper takes the first step towards constructing the surface layout, a labeling of the image intogeometric classes, to learn appearance-based models of these geometric classes, which coarsely describe the 3D scene orientation of each image region.
Abstract: Humans have an amazing ability to instantly grasp the overall 3D structure of a scene--ground orientation, relative positions of major landmarks, etc.--even from a single image. This ability is completely missing in most popular recognition algorithms, which pretend that the world is flat and/or view it through a patch-sized peephole. Yet it seems very likely that having a grasp of this "surface layout" of a scene should be of great assistance for many tasks, including recognition, navigation, and novel view synthesis. In this paper, we take the first step towards constructing the surface layout, a labeling of the image intogeometric classes. Our main insight is to learn appearance-based models of these geometric classes, which coarsely describe the 3D scene orientation of each image region. Our multiple segmentation framework provides robust spatial support, allowing a wide variety of cues (e.g., color, texture, and perspective) to contribute to the confidence in each geometric label. In experiments on a large set of outdoor images, we evaluate the impact of the individual cues and design choices in our algorithm. We further demonstrate the applicability of our method to indoor images, describe potential applications, and discuss extensions to a more complete notion of surface layout.

735 citations

Journal ArticleDOI
TL;DR: This work proposes a family of linear methods that yield a unique solution to 4- and 5-point pose determination for generic reference points and shows that they do not degenerate for coplanar configurations and even outperform the special linear algorithm for copLANar configurations in practice.
Abstract: The determination of camera position and orientation from known correspondences of 3D reference points and their images is known as pose estimation in computer vision and space resection in photogrammetry. It is well-known that from three corresponding points there are at most four algebraic solutions. Less appears to be known about the cases of four and five corresponding points. We propose a family of linear methods that yield a unique solution to 4- and 5-point pose determination for generic reference points. We first review the 3-point algebraic method. Then we present our two-step, 4-point and one-step, 5-point linear algorithms. The 5-point method can also be extended to handle more than five points. Finally, we demonstrate our methods on both simulated and real images. We show that they do not degenerate for coplanar configurations and even outperform the special linear algorithm for coplanar configurations in practice.

671 citations


Network Information
Related Topics (5)
Segmentation
63.2K papers, 1.2M citations
82% related
Pixel
136.5K papers, 1.5M citations
79% related
Image segmentation
79.6K papers, 1.8M citations
78% related
Image processing
229.9K papers, 3.5M citations
77% related
Feature (computer vision)
128.2K papers, 1.7M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202212
2021535
2020771
2019830
2018727
2017691