scispace - formally typeset
Search or ask a question

Showing papers on "Orthogonal frequency-division multiplexing published in 2010"


Journal ArticleDOI
Thomas L. Marzetta1
TL;DR: A cellular base station serves a multiplicity of single-antenna terminals over the same time-frequency interval and a complete multi-cellular analysis yields a number of mathematically exact conclusions and points to a desirable direction towards which cellular wireless could evolve.
Abstract: A cellular base station serves a multiplicity of single-antenna terminals over the same time-frequency interval. Time-division duplex operation combined with reverse-link pilots enables the base station to estimate the reciprocal forward- and reverse-link channels. The conjugate-transpose of the channel estimates are used as a linear precoder and combiner respectively on the forward and reverse links. Propagation, unknown to both terminals and base station, comprises fast fading, log-normal shadow fading, and geometric attenuation. In the limit of an infinite number of antennas a complete multi-cellular analysis, which accounts for inter-cellular interference and the overhead and errors associated with channel-state information, yields a number of mathematically exact conclusions and points to a desirable direction towards which cellular wireless could evolve. In particular the effects of uncorrelated noise and fast fading vanish, throughput and the number of terminals are independent of the size of the cells, spectral efficiency is independent of bandwidth, and the required transmitted energy per bit vanishes. The only remaining impairment is inter-cellular interference caused by re-use of the pilot sequences in other cells (pilot contamination) which does not vanish with unlimited number of antennas.

6,248 citations


Journal ArticleDOI
26 Apr 2010
TL;DR: In this article, the authors formalize the notion of multipath sparsity and present a new approach to estimate sparse (or effectively sparse) multipath channels that is based on some of the recent advances in the theory of compressed sensing.
Abstract: High-rate data communication over a multipath wireless channel often requires that the channel response be known at the receiver. Training-based methods, which probe the channel in time, frequency, and space with known signals and reconstruct the channel response from the output signals, are most commonly used to accomplish this task. Traditional training-based channel estimation methods, typically comprising linear reconstruction techniques, are known to be optimal for rich multipath channels. However, physical arguments and growing experimental evidence suggest that many wireless channels encountered in practice tend to exhibit a sparse multipath structure that gets pronounced as the signal space dimension gets large (e.g., due to large bandwidth or large number of antennas). In this paper, we formalize the notion of multipath sparsity and present a new approach to estimating sparse (or effectively sparse) multipath channels that is based on some of the recent advances in the theory of compressed sensing. In particular, it is shown in the paper that the proposed approach, which is termed as compressed channel sensing (CCS), can potentially achieve a target reconstruction error using far less energy and, in many instances, latency and bandwidth than that dictated by the traditional least-squares-based training methods.

1,066 citations


Proceedings ArticleDOI
30 Aug 2010
TL;DR: It is shown that, for the first time, wireless packet delivery can be accurately predicted for commodity 802.11 NICs from only the channel measurements that they provide, and the rate prediction is as good as the best rate adaptation algorithms for 802.
Abstract: RSSI is known to be a fickle indicator of whether a wireless link will work, for many reasons. This greatly complicates operation because it requires testing and adaptation to find the best rate, transmit power or other parameter that is tuned to boost performance. We show that, for the first time, wireless packet delivery can be accurately predicted for commodity 802.11 NICs from only the channel measurements that they provide. Our model uses 802.11n Channel State Information measurements as input to an OFDM receiver model we develop by using the concept of effective SNR. It is simple, easy to deploy, broadly useful, and accurate. It makes packet delivery predictions for 802.11a/g SISO rates and 802.11n MIMO rates, plus choices of transmit power and antennas. We report testbed experiments that show narrow transition regions (

697 citations


Book ChapterDOI
25 Oct 2010
TL;DR: This work introduces the Routing, Modulation Level and Spectrum Allocation (RMLSA) problem, as opposed to the typical Routing and Wavelength Assignment (RWA) problem of traditional WDM networks, proves that it is also NP-complete and presents various algorithms to solve it.
Abstract: Orthogonal Frequency Division Multiplexing (OFDM) has recently been proposed as a modulation technique for optical networks, because of its good spectral efficiency, flexibility, and tolerance to impairments. We consider the planning problem of an OFDM optical network, where connections are provisioned for their requested rate by elastically allocating spectrum using a variable number of OFDM subcarriers and choosing an appropriate modulation level taking into account the transmission distance. Using algorithms developed in our previous works, we evaluate the spectrum utilization gains that can be obtained by utilizing the elastic bandwidth allocation of OFDM, when compared to a traditional WDM network.

537 citations


Journal ArticleDOI
01 Jan 2010
TL;DR: This tutorial paper aims at providing an overview of nonlinear equalization methods as a key ingredient in receivers of SCM for wideband transmission, and reviews both hybrid (with filters implemented both in time and frequency domain) and all-frequency-domain iterative structures.
Abstract: In recent years single carrier modulation (SCM) has again become an interesting and complementary alternative to multicarrier modulations such as orthogonal frequency division multiplexing (OFDM). This has been largely due to the use of nonlinear equalizer structures implemented in part in the frequency domain by means of fast Fourier transforms, bringing the complexity close to that of OFDM. Here a nonlinear equalizer is formed with a linear filter to remove part of intersymbol interference, followed by a canceler of remaining interference by using previous detected data. Moreover, the capacity of SCM is similar to that of OFDM in highly dispersive channels only if a nonlinear equalizer is adopted at the receiver. Indeed, the study of efficient nonlinear frequency domain equalization techniques has further pushed the adoption of SCM in various standards. This tutorial paper aims at providing an overview of nonlinear equalization methods as a key ingredient in receivers of SCM for wideband transmission. We review both hybrid (with filters implemented both in time and frequency domain) and all-frequency-domain iterative structures. Application of nonlinear frequency domain equalizers to a multiple input multiple output scenario is also investigated, with a comparison of two architectures for interference reduction. We also present methods for channel estimation and alternatives for pilot insertion. The impact on SCM transmission of impairments such as phase noise, frequency offset and saturation due to high power amplifiers is also assessed. The comparison among the considered frequency domain equalization techniques is based both on complexity and performance, in terms of bit error rate or throughput.

429 citations


Journal ArticleDOI
TL;DR: This paper derives the exact matched filter formulation for passive radar using OFDM waveforms, and shows that the current approach using Fourier analysis across block channel estimates is equivalent to the matched filter, based on a piecewise constant assumption on the Doppler-induced phase rotation in the time domain.
Abstract: Passive radar is a concept where illuminators of opportunity are used in a multistatic radar setup. New digital signals, like digital audio/video broadcast (DAB/DVB), are excellent candidates for this scheme, as they are widely available, can be easily decoded to acquire the noise-free signal, and employ orthogonal frequency division multiplex (OFDM). Multicarrier transmission schemes like OFDM use block channel equalization in the frequency domain, efficiently implemented as a fast Fourier transform, and these channel estimates can directly be used to identify targets based on Fourier analysis across subsequent blocks. In this paper, we derive the exact matched filter formulation for passive radar using OFDM waveforms. We then show that the current approach using Fourier analysis across block channel estimates is equivalent to the matched filter, based on a piecewise constant assumption on the Doppler-induced phase rotation in the time domain. We next present high-resolution algorithms based on the same assumption: first we implement MUSIC as a 2-D spectral estimator using spatial smoothing; then we use the new concept of compressed sensing to identify targets. We compare the new algorithms and the current approach using numerical simulation and experimental data recorded from a DAB network in Germany.

360 citations


Journal ArticleDOI
TL;DR: The two techniques for generating polarization-multiplexed quadrature phase-shift keying with a high spectral efficiency have the same sensitivity and SE under idealized assumptions, but it is found that CO-OFDM requires a much larger receiver bandwidth and proportionally faster speed of the analog-to-digital converters.
Abstract: We compare by simulation the performance of two techniques for generating polarization-multiplexed quadrature phase-shift keying with a high spectral efficiency (SE). The first is based on coherent optical orthogonal frequency-division multiplexing (CO-OFDM). The second, which we call Nyquist wavelength-division multiplexing (N-WDM), is based on the use of optical pulses having an “almost” rectangular spectrum, with bandwidth ideally equal to the Baud-rate. We show that the two techniques have the same sensitivity and SE under idealized assumptions. However, we found that CO-OFDM requires a much larger receiver bandwidth and proportionally faster speed of the analog-to-digital converters. We also tested CO-OFDM and N-WDM over long-haul nonlinear links and found N-WDM to outperform CO-OFDM in this case, too.

328 citations


Journal ArticleDOI
TL;DR: This work proposes a sparsity-enhancing basis expansion and a method for optimizing the basis with or without prior statistical information about the channel, and presents an alternative CS-based channel estimator, which is capable of estimating the off-diagonal channel coefficients characterizing intersymbol and intercarrier interference (ISI/ICI).
Abstract: We consider the application of compressed sensing (CS) to the estimation of doubly selective channels within pulse-shaping multicarrier systems (which include orthogonal frequency-division multiplexing (OFDM) systems as a special case). By exploiting sparsity in the delay-Doppler domain, CS-based channel estimation allows for an increase in spectral efficiency through a reduction of the number of pilot symbols. For combating leakage effects that limit the delay-Doppler sparsity, we propose a sparsity-enhancing basis expansion and a method for optimizing the basis with or without prior statistical information about the channel. We also present an alternative CS-based channel estimator for (potentially) strongly time-frequency dispersive channels, which is capable of estimating the ?off-diagonal? channel coefficients characterizing intersymbol and intercarrier interference (ISI/ICI). For this estimator, we propose a basis construction combining Fourier (exponential) and prolate spheroidal sequences. Simulation results assess the performance gains achieved by the proposed sparsity-enhancing processing techniques and by explicit estimation of ISI/ICI channel coefficients.

279 citations


Journal ArticleDOI
Ezra Ip1
TL;DR: In this article, the authors compare single carrier (SC) versus orthogonal frequency-division multiplexing (OFDM) for polarization-multiplexed transmission and show that at realistic data rates and transmission distances, polarization mode dispersion does not significantly degrade the performance of digital backpropagation and can be mitigated by a post-BP linear equalizer.
Abstract: Digital backpropagation (BP) is a universal method for jointly compensating dispersion and nonlinear impairments in optical fiber and is applicable to signals of any modulation format. In this paper, we compare single carrier (SC) versus orthogonal frequency-division multiplexing (OFDM) for polarization-multiplexed transmission. We show that at realistic data rates and transmission distances, polarization mode dispersion does not significantly degrade the performance of BP and can be mitigated by a post-BP linear equalizer. Dispersion unmanaged transmission can significantly reduce nonlinearity, and in this transmission regime, SC and OFDM have similar nonlinear tolerance. Multichannel BP is effective at mitigating interchannel nonlinearity for point-to-point links.

267 citations


Book
09 Sep 2010
TL;DR: In this article, four leading experts from academia and industry explain the technical foundations of LTE in a tutorial style providing a comprehensive overview of the standards, including spatial diversity, interference cancellation, spatial multiplexing and multiuser/networked MIMOLTE standard overview.
Abstract: The Definitive Guide to LTE Technology Long-Term Evolution (LTE) is the next step in the GSM evolutionary path beyond 3G technology, and it is strongly positioned to be the dominant global standard for 4G cellular networks. LTE also represents the first generation of cellular networks to be based on a flat IP architecture and is designed to seamlessly support a variety of different services, such as broadband data, voice, and multicast video. Its design incorporates many of the key innovations of digital communication, such as MIMO (multiple input multiple output) and OFDMA (orthogonal frequency division multiple access), that mandate new skills to plan, build, and deploy an LTE network. In Fundamentals of LTE, four leading experts from academia and industry explain the technical foundations of LTE in a tutorial style providing a comprehensive overview of the standards. Following the same approach that made their recent Fundamentals of WiMAX successful, the authors offer a complete framework for understanding and evaluating LTE. Topics includeCellular wireless history and evolution: Technical advances, market drivers, and foundational networking and communications technologiesMulticarrier modulation theory and practice: OFDM system design, peak-to-average power ratios, and SC-FDE solutionsFrequency Domain Multiple Access: OFDMA downlinks, SC-FDMA uplinks, resource allocation, and LTE-specific implementationMultiple antenna techniques and tradeoffs: spatial diversity, interference cancellation, spatial multiplexing, and multiuser/networked MIMOLTE standard overview: air interface protocol, channel structure, and physical layersDownlink and uplink transport channel processing: channel encoding, modulation mapping, Hybrid ARQ, multi-antenna processing, and morePhysical/MAC layer procedures and scheduling: channel-aware scheduling, closed/open-loop multi-antenna processing, and morePacket flow, radio resource, and mobility management: RLC, PDCP, RRM, and LTE radio access network mobility/handoff procedures

253 citations


Proceedings ArticleDOI
01 Dec 2010
TL;DR: This work considers the planning problem of an OFDM-based optical network where connections are given a traffic matrix that includes the requested transmission rates of the connections to be served, and proposes a heuristic algorithm that serves connections one-by-one and uses it to solve the Planning problem by sequentially serving all traffic matrix connections.
Abstract: Orthogonal Frequency Division Multiplexing (OFDM) has been recently proposed as a modulation technique for optical networks, due to its good spectral efficiency and impairment tolerance. Optical OFDM is much more flexible compared to traditional WDM systems, enabling elastic bandwidth transmissions. We consider the planning problem of an OFDM-based optical network where we are given a traffic matrix that includes the requested transmission rates of the connections to be served. Connections are provisioned for their requested rate by elastically allocating spectrum using a variable number of OFDM subcarriers. We introduce the Routing and Spectrum Allocation (RSA) problem, as opposed to the typical Routing and Wavelength Assignment (RWA) problem of traditional WDM networks, and present various algorithms to solve the RSA. We start by presenting an optimal ILP RSA algorithm that minimizes the spectrum used to serve the traffic matrix, and also present a decomposition method that breaks RSA into two substituent subproblems, namely, (i) routing and (ii) spectrum allocation (R+SA) and solves them sequentially. We also propose a heuristic algorithm that serves connections one-by-one and use it to solve the planning problem by sequentially serving all traffic matrix connections. To feed the sequential algorithm, two ordering policies are proposed; a simulated annealing meta-heuristic is also used to obtain even better orderings. Our results indicate that the proposed sequential heuristic with appropriate ordering yields close to optimal solutions in low running times.

Proceedings ArticleDOI
29 Apr 2010
TL;DR: It is demonstrated that residual distortions severely degrade the performance of (near-)optimum MIMO detection algorithms, and an efficient algorithm is proposed, which is based on an i.i.d. Gaussian model for the distortion caused by these impairments.
Abstract: Physical transceiver implementations for multiple-input multiple-output (MIMO) wireless communication systems suffer from transmit-RF (Tx-RF) impairments. In this paper, we study the effect on channel capacity and error-rate performance of residual Tx-RF impairments that defy proper compensation. In particular, we demonstrate that such residual distortions severely degrade the performance of (near-)optimum MIMO detection algorithms. To mitigate this performance loss, we propose an efficient algorithm, which is based on an i.i.d. Gaussian model for the distortion caused by these impairments. In order to validate this model, we provide measurement results based on a 4-stream Tx-RF chain implementation for MIMO orthogonal frequency-division multiplexing (OFDM).

Journal ArticleDOI
TL;DR: The proposed POLMUX architecture for next-generation PON systems based on OFDM, polarization multiplexing (POLMUX), and direct detection achieved the highest single-wavelength downstream transmission reported to date in any PON system.
Abstract: In this paper, we propose and experimentally demonstrate the first single-? 40 Gb/s and 108 Gb/s multiple-input multiple-output orthogonal frequency-division multiple access (OFDMA) passive optical networks (PON) architecture for next-generation PON systems based on OFDM, polarization multiplexing (POLMUX), and direct detection. Superior performance was exhibited after 20 km SSMF transmission and a 1:32 optical split. The novel POLMUX approach greatly simplified receiver-end hardware compared to coherent detectors, while increasing spectral efficiency to enable 40+ Gb/s data rates. Moreover, the proposed solution achieved the highest single-wavelength downstream transmission reported to date in any PON system. As such, the introduced architecture may be viewed as a highly attractive candidate for next-generation optical access.

Journal ArticleDOI
TL;DR: Several ongoing challenges are surveyed, including the design of cost-efficient and low-loss on-chip and in-package antennas and antenna arrays, the characterization of CMOS processes at millimeter-wave frequencies, the discovery of efficient modulation techniques that are suitable for the unique hardware impairments and frequency selective channel characteristics at millimeters-wavefrequency.
Abstract: To meet the needs of next-generation high-data-rate applications, 60 GHz wireless networks must deliver Gb/s data rates and reliability at a low cost. In this article, we surveyed several ongoing challenges, including the design of cost-efficient and low-loss on-chip and in-package antennas and antenna arrays, the characterization of CMOS processes at millimeter-wave frequencies, the discovery of efficient modulation techniques that are suitable for the unique hardware impairments and frequency selective channel characteristics at millimeter-wave frequencies, and the creation of MAC protocols that more effectively coordinate 60 GHz networks with directional antennas. Solving these problems not only provides for wireless video streaming and interconnect replacement, but also moves printed and magnetic media such as books and hard drives to a lower cost, higher reliability semiconductor form factor with wireless connectivity between and within devices.

Posted Content
TL;DR: In this article, the effect on channel capacity and error-rate performance of residual Tx-RF impairments that defy proper compensation was studied. And the authors proposed an efficient algorithm, which is based on an i.i.d. Gaussian model for the distortion caused by these impairments.
Abstract: Physical transceiver implementations for multiple-input multiple-output (MIMO) wireless communication systems suffer from transmit-RF (Tx-RF) impairments. In this paper, we study the effect on channel capacity and error-rate performance of residual Tx-RF impairments that defy proper compensation. In particular, we demonstrate that such residual distortions severely degrade the performance of (near-)optimum MIMO detection algorithms. To mitigate this performance loss, we propose an efficient algorithm, which is based on an i.i.d. Gaussian model for the distortion caused by these impairments. In order to validate this model, we provide measurement results based on a 4-stream Tx-RF chain implementation for MIMO orthogonal frequency-division multiplexing (OFDM).

Proceedings ArticleDOI
30 Aug 2010
TL;DR: FICA is introduced, a fine-grained channel access method that embodies a new PHY architecture based on OFDM that retains orthogonality among subchannels while relying solely on the coordination mechanisms in existing WLAN, carrier-sensing and broadcasting.
Abstract: Modern communication technologies are steadily advancing the physical layer (PHY) data rate in wireless LANs, from hundreds of Mbps in current 802.11n to over Gbps in the near future. As PHY data rates increase, however, the overhead of media access control (MAC) progressively degrades data throughput efficiency. This trend reflects a fundamental aspect of the current MAC protocol, which allocates the channel as a single resource at a time.This paper argues that, in a high data rate WLAN, the channel should be divided into separate subchannels whose width is commensurate with PHY data rate and typical frame size. Multiple stations can then contend for and use subchannels simultaneously according to their traffic demands, thereby increasing overall efficiency. We introduce FICA, a fine-grained channel access method that embodies this approach to media access using two novel techniques. First, it proposes a new PHY architecture based on OFDM that retains orthogonality among subchannels while relying solely on the coordination mechanisms in existing WLAN, carrier-sensing and broadcasting. Second, FICA employs a frequency-domain contention method that uses physical layer RTS/CTS signaling and frequency domain backoff to efficiently coordinate subchannel access. We have implemented FICA, both MAC and PHY layers, using a software radio platform, and our experiments demonstrate the feasibility of the FICA design. Further, our simulation results suggest FICA can improve the efficiency ratio of WLANs by up to 400% compared to existing 802.11.

Proceedings Article
16 Jun 2010
TL;DR: It is demonstrated that in a single-user MIMO channel and for low signal-to-noise (SNR) ratios, the relative calibration method can increase the capacity close to the theoretical limit.
Abstract: Channel state information at the transmitter (CSIT) can greatly improve the capacity of a wireless MIMO communication system. In a time division duplex (TDD) system CSIT can be obtained by exploiting the reciprocity of the wireless channel. This however requires calibration of the radio frequency (RF) chains of the receiver and the transmitter, which are in general not reciprocal. In this paper we investigate different methods for relative calibration in the presence of frequency offsets between transmitter and receiver. We show results of theses calibration methods with real two-directional channel measurements, which were performed using the Eure-com MIMO Openair Sounder (EMOS). We demonstrate that in a single-user MIMO channel and for low signal-to-noise (SNR) ratios, the relative calibration method can increase the capacity close to the theoretical limit.

Journal ArticleDOI
TL;DR: An analytical model for the transmission of orthogonal frequency division multiplexing (OFDM)-based signals over freespace optics (FSO) links is introduced, taking into account the optical noises, the laser diode nonlinear distortion, and the atmospheric turbulence effect on the FSO channel modeled by the gamma-gamma distribution.
Abstract: Radio-on-free space optical (RoFSO) communication systems are rapidly gaining popularity as an efficient and cost-effective means of transferring high data rates and radio frequency (RF) signals with the same capacity as optical fiber. However, the performance of those systems depends strongly on the atmospheric conditions and the nonlinear characteristics of the optical link. In this paper, we introduce an analytical model for the transmission of orthogonal frequency division multiplexing (OFDM)-based signals over freespace optics (FSO) links. Further, we derive a closed-form bit error probability (BEP) and outage probability expressions, taking into account the optical noises, the laser diode nonlinear distortion, and the atmospheric turbulence effect on the FSO channel modeled by the gamma-gamma distribution. This paper reports the most significant parameters that degrade the transmission performance of the OFDM signal over FSO links and indicates the cases that provide the optimal operating conditions for the link. The obtained results can be useful for designing, predicting, and evaluating the RoFSO system's ability to transmit wireless services over turbulent FSO links under actual conditions.

Journal ArticleDOI
TL;DR: It is argued that, in the context of most modern wireless systems and for the operating points of interest, transmission techniques that utilize all available spatial degrees of freedom for multiplexing outperform techniques that explicitly sacrifice spatial multipleXing for diversity.
Abstract: A contemporary perspective on transmit antenna diversity and spatial multiplexing is provided. It is argued that, in the context of most modern wireless systems and for the operating points of interest, transmission techniques that utilize all available spatial degrees of freedom for multiplexing outperform techniques that explicitly sacrifice spatial multiplexing for diversity. Reaching this conclusion, however, requires that the channel and some key system features be adequately modeled and that suitable performance metrics be adopted; failure to do so may bring about starkly different conclusions. As a specific example, this contrast is illustrated using the 3GPP long-term evolution system design.

Journal ArticleDOI
TL;DR: A practical scheme to perform the fast Fourier transform in the optical domain is introduced, which performs an optical real-time FFT on the consolidated OFDM data stream, thereby demultiplexing the signal into lower bit rate subcarrier tributaries, which can then be processed electronically.
Abstract: A practical scheme to perform the fast Fourier transform in the optical domain is introduced. Optical real-time FFT signal processing is performed at speeds far beyond the limits of electronic digital processing, and with negligible energy consumption. To illustrate the power of the method we demonstrate an optical 400 Gbit/s OFDM receiver. It performs an optical real-time FFT on the consolidated OFDM data stream, thereby demultiplexing the signal into lower bit rate subcarrier tributaries, which can then be processed electronically.

Journal ArticleDOI
Bernhard Spinnler1
TL;DR: An overview of digital equalization algorithms for coherent receivers and derive expressions for their complexity is given, which compare single-carrier and multicarrier approaches, and investigates blind equalizer adaptation as well as training-symbol-based algorithms.
Abstract: Digital signal processing has completely changed the way optical communication systems work during recent years. In combination with coherent demodulation, it enables compensation of optical distortions that seemed impossible only a few years ago. However, at high bit rates, this comes at the price of complex processing circuits and high power consumption. In order to translate theoretic concepts into economically viable products, careful design of the digital signal processing algorithms is needed. In this paper, we give an overview of digital equalization algorithms for coherent receivers and derive expressions for their complexity. We compare single-carrier and multicarrier approaches, and investigate blind equalizer adaptation as well as training-symbol-based algorithms. We examine tradeoffs between parameters like sampling rate and tracking speed that are important for algorithm design and practical implementation.

Journal ArticleDOI
TL;DR: Compared with the traditional cumulant-based classifiers, the proposed K-S classifiers offer superior classification performance, require less number of signal samples (thus is fast), and is more robust to various channel impairments.
Abstract: A new approach to modulation classification based on the Kolmogorov-Smirnov (K-S) test is proposed. The K-S test is a non-parametric method to measure the goodness of fit. The basic procedure involves computing the empirical cumulative distribution function (ECDF) of some decision statistic derived from the received signal, and comparing it with the CDFs or the ECDFs of the signal under each candidate modulation format. The K-S-based modulation classifiers are developed for various channels, including the AWGN channel, the flat-fading channel, the OFDM channel, and the channel with unknown phase and frequency offsets, as well as the non-Gaussian noise channel, for both QAM and PSK modulations. Extensive simulation results demonstrate that compared with the traditional cumulant-based classifiers, the proposed K-S classifiers offer superior classification performance, require less number of signal samples (thus is fast), and is more robust to various channel impairments.

Journal ArticleDOI
TL;DR: In this paper, the authors present the first experimental study of interference alignment in measured multiple-input-multiple-output orthogonal frequency-division-multiplexing (MIMO-OFDM) interference channels.
Abstract: Interference alignment (IA) has been shown to achieve the maximum achievable degrees of freedom in the interference channel. This results in sum rate scaling linearly with the number of users in the high signal-to-noise-ratio (SNR) regime. Linear scaling is achieved by precoding the transmitted signals to align interference subspaces at the receivers given channel knowledge of all transmit-receive pairs, effectively reducing the number of discernible interferers. The theory of IA was derived under assumptions about the richness of scattering in the propagation channel; practical channels do not guarantee such ideal characteristics. This paper presents the first experimental study of IA in measured multiple-input-multiple-output orthogonal frequency-division-multiplexing (MIMO-OFDM) interference channels. Our measurement campaign includes a variety of indoor and outdoor measurement scenarios at The University of Texas at Austin. We show that IA achieves the claimed scaling factors, or degrees of freedom, in several measured channel settings for a three-user two-antenna-per-node setup. In addition to verifying the claimed performance, we characterize the effect of Kronecker spatial correlation on sum rate and present two other correlation measures, which we show to be more tightly related to the achieved sum rate.

Patent
Min Seok Noh1, Moon Il Lee1, Jae Hoon Chung1, Sung Ho Moon1, Seung Hee Han1 
27 Sep 2010
TL;DR: In this article, a method and apparatus of transmitting a reference signal in a wireless communication system is provided, where the DMRSs are mapped to a resource region, and transmitted through the respective corresponding antennas.
Abstract: A method and apparatus of transmitting a reference signal in a wireless communication system is provided. Demodulation Reference Signals (DMRSs) for a plurality of respective antennas is generated. The DMRSs are mapped to a resource region, and transmitted through the respective corresponding antennas. The DMRSs are multiplexed using at least one of frequency division multiplexing (FDM), code division multiplexing (CDM), and time division multiplexing (TDM) methods and mapped in the resource region. Also, a position of an orthogonal frequency division multiplexing (OFDM) symbol to which the DMRSs are mapped in the resource region is an OFDM symbol to which a physical downlink control channel (PDCCH) and a legacy cell-specific reference signal (CRS) are not mapped.

Journal ArticleDOI
TL;DR: In this paper, three adaptive modulation schemes are considered: (i) variable-rate variable-power adaptation, (ii) channel inversion, and (iii) truncated channel-inversion schemes.
Abstract: Adaptive modulation and coding can provide robust and spectrally efficient transmission over terrestrial free-space optical channels. Three adaptive modulation schemes are considered in this paper: (i) variable-rate variable-power adaptation, (ii) channel inversion, and (iii) truncated channel inversion schemes. It is shown that a simple channel inversion scheme performs comparable to a variable-rate variable-power adaptation scheme in the weak turbulence regime but faces significant performance degradation in the strong turbulence regime. We further study adaptive coding based on large-girth quasi-cyclic low-density parity-check- (LDPC-) coded modulation. It is shown by simulation that deep fades of the order of 30 dB and above in the regime of strong turbulence can be tolerated with the proposed scheme. It is demonstrated that communication in the saturation regime is possible with the proposed adaptive LDPC-coded modulation. We also determine the spectral efficiencies for the proposed adaptive modulation and adaptive coding schemes.

Journal ArticleDOI
TL;DR: This paper presents a tutorial review of the classical works on FBMC systems and shows that some of the more recent developments are, in fact, reinventions of multicarrier techniques that have been developed prior of the era of OFDM.
Abstract: Prior to the discovery of the celebrated orthogonal frequency division multiplexing (OFDM), multicarrier techniques that use analog filter banks were introduced in the 1960s. Moreover, advancements in the design of perfect reconstruction filter banks have led to a number developments in the design of prototype digital filters and polyphase structures for efficient implementations of the filter bank multicarrier (FBMC) systems. The main thrust of this paper is to present a tutorial review of the classical works on FBMC systems and show that some of the more recent developments are, in fact, reinventions of multicarrier techniques that have been developed prior of the era of OFDM. We also review the recent novel developments in the design of FBMC systems that are tuned to cope with fast fading wireless channels.

Journal ArticleDOI
TL;DR: The fastest ever 11.25Gb/s real-time FPGA-based optical orthogonal frequency division multiplexing (OOFDM) transceivers utilizing 64-QAM encoding/decoding and significantly improved variable power loading are experimentally demonstrated, for the first time, incorporating advanced functionalities of on-line performance monitoring, live system parameter optimization and channel estimation.
Abstract: The fastest ever 11.25Gb/s real-time FPGA-based optical orthogonal frequency division multiplexing (OOFDM) transceivers utilizing 64-QAM encoding/decoding and significantly improved variable power loading are experimentally demonstrated, for the first time, incorporating advanced functionalities of on-line performance monitoring, live system parameter optimization and channel estimation. Real-time end-to-end transmission of an 11.25Gb/s 64-QAM-encoded OOFDM signal with a high electrical spectral efficiency of 5.625bit/s/Hz over 25km of standard and MetroCor single-mode fibres is successfully achieved with respective power penalties of 0.3dB and -0.2dB at a BER of 1.0 x 10(-3) in a directly modulated DFB laser-based intensity modulation and direct detection system without in-line optical amplification and chromatic dispersion compensation. The impacts of variable power loading as well as electrical and optical components on the transmission performance of the demonstrated transceivers are experimentally explored in detail. In addition, numerical simulations also show that variable power loading is an extremely effective means of escalating system performance to its maximum potential.

Journal ArticleDOI
Jianjun Yu, Xiang Zhou1
TL;DR: It is shown that high-speed QPSK, 8PSK.
Abstract: We review and summarize several 100G per channel high-capacity transmission systems enabled by advanced technologies such as multilevel modulation format, new low-loss and large effective area fiber, hybrid EDFA/Raman amplification, and digital coherent detection technologies. We show that high-speed QPSK, 8PSK, 8QAM, and 16QAM can all be generated using commercially available optical modulators using only binary electrical drive signals through novel synthesis methods, and that all of these modulation formats can be detected using digital coherent detection. We also show our latest research results on 400 Gb/s and 1 Tb/s per channel by using orthogonal DWDM transmission technologies.

Journal ArticleDOI
TL;DR: This work proposes an information theoretic waveform design algorithm for target tracking in a low-grazing angle (LGA) scenario and incorporates realistic physical and statistical effects, such as Earth's curvature, vertical refractivity gradient of lower atmosphere, and compound-Gaussian characteristics of sea-clutter into this model.
Abstract: We propose an information theoretic waveform design algorithm for target tracking in a low-grazing angle (LGA) scenario. We incorporate realistic physical and statistical effects, such as Earth's curvature, vertical refractivity gradient of lower atmosphere, and compound-Gaussian characteristics of sea-clutter, into our model. We employ a co-located multiple-input-multiple-output (MIMO) radar configuration using wideband orthogonal frequency division multiplexing (OFDM) signalling scheme. The frequency diversity of OFDM provides richer information about the target as different scattering centers resonate at different frequencies. Additionally, we use polarization-sensitive transceivers to resolve the multipath signals with small separation angles. Thus, we track the scattering coefficients of the target at different frequencies along with its position and velocity. We apply a sequential Monte Carlo method (particle filter) to track the target. Our tracker works in a closed-loop fashion with an integrated optimal waveform design technique based on mutual information (MI) criterion. We seek the optimal OFDM waveform at the current pulse duration to maximize the MI between the state and measurement vectors at the next pulse duration utilizing all the measurement history up to the current pulse. Our numerical examples demonstrate the importance of realistic physical modeling, effects of frequency diversity through OFDM MIMO configuration, and achieved performance improvements due to adaptive OFDM waveform design.

Journal ArticleDOI
TL;DR: A new QoS-aware LTE OFDMA scheduling algorithm for wireless real-time video delivery over the downlink of LTE cellular networks to achieve the best user-perceived video quality under the given application delay constraint is presented.
Abstract: 3GPP long term evolution is one of the major steps in mobile communication to enhance the user experience for next-generation mobile broadband networks. In LTE, orthogonal frequency-division multiple access is adopted in the downlink of its E-UTRA air interface. Although cross-layer techniques have been widely adopted in literature for dynamic resource allocation to maximize data rate in OFDMA wireless networks, application-oriented quality of service for video delivery, such as delay constraint and video distortion, have been largely ignored. However, for wireless video delivery in LTE, especially delay-bounded real-time video streaming, higher data rate could lead to higher packet loss rate, thus degrading the user-perceived video quality. In this article we present a new QoS-aware LTE OFDMA scheduling algorithm for wireless real-time video delivery over the downlink of LTE cellular networks to achieve the best user-perceived video quality under the given application delay constraint. In the proposed approach, system throughput, application QoS constraints, and scheduling fairness are jointly integrated into a cross-layer design framework to dynamically perform radio resource allocation for multiple users, and to effectively choose the optimal system parameters such as modulation and coding scheme and video encoding parameters to adapt to the varying channel quality of each resource block. Experimental results have shown significant performance enhancement of the proposed system.