scispace - formally typeset
Search or ask a question

Showing papers on "Orthogonal frequency-division multiplexing published in 2013"


Proceedings ArticleDOI
02 Jun 2013
TL;DR: It is shown that the downlink NOMA with SIC improves both the capacity and cell-edge user throughput performance irrespective of the availability of the frequency-selective channel quality indicator (CQI) on the base station side.
Abstract: This paper presents a non-orthogonal multiple access (NOMA) concept for cellular future radio access (FRA) towards the 2020s information society. Different from the current LTE radio access scheme (until Release 11), NOMA superposes multiple users in the power domain although its basic signal waveform could be based on the orthogonal frequency division multiple access (OFDMA) or the discrete Fourier transform (DFT)-spread OFDM the same as LTE baseline. In our concept, NOMA adopts a successive interference cancellation (SIC) receiver as the baseline receiver scheme for robust multiple access, considering the expected evolution of device processing capabilities in the future. Based on system-level evaluations, we show that the downlink NOMA with SIC improves both the capacity and cell-edge user throughput performance irrespective of the availability of the frequency-selective channel quality indicator (CQI) on the base station side. Furthermore, we discuss possible extensions of NOMA by jointly applying multi-antenna/site technologies with a proposed NOMA/MIMO scheme using SIC and an interference rejection combining (IRC) receiver to achieve further capacity gains, e.g., a three-fold gain in the spectrum efficiency representing a challenging target for FRA.

1,960 citations


Proceedings ArticleDOI
Hosein Nikopour1, Hadi Baligh1
25 Nov 2013
TL;DR: A new multiple access scheme so called sparse code multiple access (SCMA) is proposed which still enjoys the low complexity reception technique but with better performance compared to LDS, allowing us to take advantage of a near optimal ML receiver with practically feasible complexity.
Abstract: Multicarrier CDMA is a multiplexing approach in which modulated QAM symbols are spread over multiple OFDMA tones by using a generally complex spreading sequence. Effectively, a QAM symbol is repeated over multiple tones. Low density signature (LDS) is a version of CDMA with low density spreading sequence allowing us to take advantage of a near optimal ML receiver with practically feasible complexity. In this paper, we propose a new multiple access scheme so called sparse code multiple access (SCMA) which still enjoys the low complexity reception technique but with better performance compared to LDS. In SCMA, the procedure of bit to QAM symbol mapping and spreading are combined together and incoming bits are directly mapped to a multidimensional codeword of an SCMA codebook set. Each layer or user has its dedicated codebook. Shaping gain of a multidimensional constellation is the main source of the performance improvement in comparison to the simple repetition of QAM symbols in LDS. In general, SCMA codebook design is an optimization problem. A systematic sub-optimal approach is proposed here for SCMA codebook design.

1,202 citations


Book
30 Apr 2013
TL;DR: This book offers a unified presentation of OFDM theory and high speed and wireless applications, in particular, ADSL, wireless LAN, and digital broadcasting technologies are explained.
Abstract: From the Publisher: Multi-carrier modulation, in particular orthogonal frequency division multiplexing (OFDM), has been successfully applied to a wide variety of digital communications applications for several years. Although OFDM has been chosen as the physical layer standard for a diversity of important systems, the theory, algorithms, and implementation techniques remain subjects of current interest. This book is intended to be a concise summary of the present state of the art of the theory and practice of OFDM technology. This book offers a unified presentation of OFDM theory and high speed and wireless applications. In particular, ADSL, wireless LAN, and digital broadcasting technologies are explained. It is hoped that this book will prove valuable both to developers of such systems, and to researchers and graduate students involved in analysis of digital communications, and will remain a valuable summary of the technology, providing an understanding of new advances as well as the present core technology.

755 citations


Journal ArticleDOI
TL;DR: It is shown via computer simulations that the proposed OFDM with index modulation scheme achieves significantly better error performance than classical OFDM due to the information bits carried in the spatial domain by the indices of OFDM subcarriers.
Abstract: In this paper, a novel orthogonal frequency division multiplexing (OFDM) scheme, called OFDM with index modulation (OFDM-IM), is proposed for operation over frequency-selective and rapidly time-varying fading channels In this scheme, the information is conveyed not only by M-ary signal constellations as in classical OFDM, but also by the indices of the subcarriers, which are activated according to the incoming bit stream Different low complexity transceiver structures based on maximum likelihood detection or log-likelihood ratio calculation are proposed and a theoretical error performance analysis is provided for the new scheme operating under ideal channel conditions Then, the proposed scheme is adapted to realistic channel conditions such as imperfect channel state information and very high mobility cases by modifying the receiver structure The approximate pairwise error probability of OFDM-IM is derived under channel estimation errors For the mobility case, several interference unaware/aware detection methods are proposed for the new scheme It is shown via computer simulations that the proposed scheme achieves significantly better error performance than classical OFDM due to the information bits carried by the indices of OFDM subcarriers under both ideal and realistic channel conditions

752 citations


Journal ArticleDOI
TL;DR: ADO-OFDM is shown to be more optically power efficient than conventional ACO-TODM and DCO- OFDM, for some bit rate/normalized bandwidths.
Abstract: In this paper, three forms of orthogonal frequency division multiplexing (OFDM) designed for intensity modulated/direct detection (IM/DD) optical systems are compared. These are asymmetrically clipped optical OFDM (ACO-OFDM), DC biased optical OFDM (DCO-OFDM) and asymmetrically clipped DC biased optical OFDM (ADO-OFDM). ADO-OFDM is a new technique that combines aspects of ACO-OFDM and DCO-OFDM by simultaneously transmitting ACO-OFDM on the odd subcarriers and DCO-OFDM on the even subcarriers. The odd subcarriers are demodulated as in a conventional ACO-OFDM receiver and the even subcarriers are demodulated using a form of interference cancellation. ADO-OFDM is shown to be more optically power efficient than conventional ACO-OFDM and DCO-OFDM, for some bit rate/normalized bandwidths. It is also shown that by varying the proportion of optical power on the ACO-OFDM component, the DC bias level of DCO-OFDM and the constellations sent on the odd and even subcarriers, the optical power efficiency of ADO-OFDM can be changed.

623 citations


Proceedings ArticleDOI
01 Dec 2013
TL;DR: The results indicate that the UFMC scheme outperforms the OFDM for both perfect and non-perfect frequency synchronization between the UEs and BSs.
Abstract: In this paper, we propose a multi-carrier transmission scheme to overcome the problem of intercarrier interference (ICI) in orthogonal frequency division multiplexing (OFDM) systems. In the proposed scheme, called universal-filtered multi-carrier (UFMC), a filtering operation is applied to a group of consecutive subcarriers (e.g. a given allocation of a single user) in order to reduce out-of-band sidelobe levels and subsequently minimize the potential ICI between adjacent users in case of asynchronous transmissions. We consider a coordinated multi-point (CoMP) reception technique, where a number of base stations (BSs) send the received signals from user equipments (UEs) to a CoMP central unit (CCU) for joint detection and processing. We examine the impact of carrier frequency offset (CFO) on the performance of the proposed scheme and compare the results with the performance of cyclic prefix based orthogonal frequency division multiplexing (CP-OFDM) systems. We use computer experiments to illustrate the efficiency of the proposed multi-carrier scheme. The results indicate that the UFMC scheme outperforms the OFDM for both perfect and non-perfect frequency synchronization between the UEs and BSs.

497 citations


Journal ArticleDOI
01 Dec 2013
TL;DR: A novel approach is presented in this paper for realizing SWIPT in a broadband system where orthogonal frequency division multiplexing and transmit beamforming are deployed to create a set of parallel sub-channels forSWIPT, which simplifies resource allocation.
Abstract: Far-field microwave power transfer (MPT) will free wireless sensors and other mobile devices from the constraints imposed by finite battery capacities. Integrating MPT with wireless communications to support simultaneous wireless information and power transfer (SWIPT) allows the same spectrum to be used for dual purposes without compromising the quality of service. A novel approach is presented in this paper for realizing SWIPT in a broadband system where orthogonal frequency division multiplexing and transmit beamforming are deployed to create a set of parallel sub-channels for SWIPT, which simplifies resource allocation. Based on a proposed reconfigurable mobile architecture, different system configurations are considered by combining single-user/multi-user systems, downlink/uplink information transfer, and variable/fixed coding rates. Optimizing the power control for these configurations results in a new class of multi-user power-control problems featuring the circuit-power constraints, specifying that the transferred power must be sufficiently large to support the operation of the receiver circuitry. Solving these problems gives a set of power-control algorithms that exploit channel diversity in frequency for simultaneously enhancing the throughput and the MPT efficiency. For the system configurations with variable coding rates, the algorithms are variants of water-filling that account for the circuit-power constraints. The optimal algorithms for those configurations with fixed coding rates are shown to sequentially allocate mobiles their required power for decoding in ascending order until the entire budgeted power is spent. The required power for a mobile is derived as simple functions of the minimum signal-to-noise ratio for correct decoding, the circuit power and sub-channel gains.

457 citations


Journal ArticleDOI
TL;DR: An experimental demonstration of indoor wireless visible-light communication transmission at 1 Gb/s is reported, using a four-channel multiple-input multiple-output link that uses white LED sources.
Abstract: This letter reports an experimental demonstration of indoor wireless visible-light communication transmission at 1 Gb/s. The system consists of a four-channel multiple-input multiple-output link that uses white LED sources, each transmitting signals at 250 Mb/s using orthogonal frequency division multiplexing modulation. A nine-channel imaging diversity receiver is used to detect the signals, and an average bit error rate of 10-3 is achieved at the room illumination level of ~1000 lux at 1-m range.

451 citations


Journal ArticleDOI
14 Mar 2013
TL;DR: Faster-than-Nyquist (FTN) signaling is surveyed, an extension of ordinary linear modulation in which the usual data bearing pulses are simply sent faster, and consequently are no longer orthogonal.
Abstract: In this paper, we survey faster-than-Nyquist (FTN) signaling, an extension of ordinary linear modulation in which the usual data bearing pulses are simply sent faster, and consequently are no longer orthogonal. Far from a disadvantage, this innovation can transmit up to twice the bits as ordinary modulation at the same bit energy, spectrum, and error rate. The method is directly applicable to orthogonal frequency division multiplex (OFDM) and quadrature amplitude modulation (QAM) signaling. Performance results for a number of practical systems are presented. FTN signaling raises a number of basic issues in communication theory and practice. The Shannon capacity of the signals is considerably higher.

436 citations


01 Jan 2013
TL;DR: In this article, two major types of pilot arrangement such as block type and comb-type pilot have been focused employing Least Square Error (LSE) and minimum mean square error (MMSE) channel estimators.
Abstract: Orthogonal frequency division multiplexing (OFDM) provides an effective and low complexity means of eliminating inter symbol interference for transmission over frequency selective fading channels. This technique has eceived a lot of interest in mobile communication research as the radio channel is usually frequency selective and time variant. In OFDM system, modulation may be coherent or differential. Channel state information (CSI) is required for the OFDM receiver to perform coherent detection or diversity combining, if multiple transmit and receive antennas are deployed. In practice, CSI can be reliably estimated at the receiver by transmitting pilots along with data symbols. Pilot symbol assisted channel estimation is especially attractive for wireless links, where the channel is time-varying. When sing differential modulation there is no need for a channel estimate but its performance is inferior to coherent system. In this paper we investigate and compare various efficient pilot based channel estimation schemes for OFDM systems. In this present study, two major types of pilot arrangement such as block type and comb-type pilot have been focused employing Least Square Error (LSE) and Minimum Mean Square Error (MMSE) channel estimators. Block type pilot sub-carriers is especially suitable for slow-fading radio channels whereas comb type pilots provide better resistance to fast fading channels. Also comb type pilot arrangement is sensitive to frequency selectivity when comparing to block type arrangement. The channel estimation algorithm based on comb type pilots is divided into pilot signal estimation and channel interpolation. The symbol error rate (SER) performances of OFDM system for both block type and comb type pilot subcarriers are presented in this paper.

412 citations


Journal ArticleDOI
TL;DR: A novel elastic optical network architecture with immense flexibility and scalability in spectrum allocation and data rate accommodation could be built to support diverse services and the rapid growth of Internet traffic in the future.
Abstract: Orthogonal frequency-division multiplexing (OFDM) is a modulation technology that has been widely adopted in many new and emerging broadband wireless and wireline communication systems. Due to its capability to transmit a high-speed data stream using multiple spectral-overlapped lower-speed subcarriers, OFDM technology offers superior advantages of high spectrum efficiency, robustness against inter-carrier and inter-symbol interference, adaptability to server channel conditions, etc. In recent years, there have been intensive studies on optical OFDM (O-OFDM) transmission technologies, and it is considered a promising technology for future ultra-high-speed optical transmission. Based on O-OFDM technology, a novel elastic optical network architecture with immense flexibility and scalability in spectrum allocation and data rate accommodation could be built to support diverse services and the rapid growth of Internet traffic in the future. In this paper, we present a comprehensive survey on OFDM-based elastic optical network technologies, including basic principles of OFDM, O-OFDM technologies, the architectures of OFDM-based elastic core optical networks, and related key enabling technologies. The main advantages and issues of OFDM-based elastic core optical networks that are under research are also discussed.

Journal ArticleDOI
TL;DR: This paper surveys the various ICIC avoidance schemes in the downlink of OFDMA-based cellular networks and introduces new parameterized classifications and makes use of these classifications to categorize and review various static and dynamic ICIC schemes.
Abstract: Orthogonal Frequency Division Multiplexing Access (OFDMA) has been increasingly deployed in various emerging and evolving cellular systems to reduce interference and improve overall system performance. However, in these systems Inter-Cell Interference (ICI) still poses a real challenge that limits the system performance, especially for users located at the cell edge. Inter-cell interference coordination (ICIC) has been investigated as an approach to alleviate the impact of interference and improve performance in OFDMA-based systems. A common ICIC technique is interference avoidance in which the allocation of the various system resources (e.g., time, frequency, and power) to users is controlled to ensure that the ICI remains within acceptable limits. This paper surveys the various ICIC avoidance schemes in the downlink of OFDMA-based cellular networks. In particular, the paper introduces new parameterized classifications and makes use of these classifications to categorize and review various static (frequency reuse-based) and dynamic (cell coordination-based) ICIC schemes.

Patent
17 Jul 2013
TL;DR: In this article, a method and apparatus for performing acquisition, synchronization and cell selection within an MIMO-OFDM communication system is provided, where correlations between subsets of signal samples, whose first signal sample lies within the searching window, and known values.
Abstract: A method and apparatus are provided for performing acquisition, synchronization and cell selection within an MIMO-OFDM communication system. A coarse synchronization is performed to determine a searching window. A fine synchronization is then performed by measuring correlations between subsets of signal samples, whose first signal sample lies within the searching window, and known values. The correlations are performed in the frequency domain of the received signal. In a multiple-output OFDM system, each antenna of the OFDM transmitter has a unique known value. The known value is transmitted as pairs of consecutive pilot symbols, each pair of pilot symbols being transmitted at the same subset of sub-carrier frequencies within the OFDM frame.

Journal ArticleDOI
Yuanquan Wang1, Yiguang Wang1, Nan Chi1, Jianjun Yu1, Huiliang Shang1 
TL;DR: This work proposes and experimentally demonstrate a novel full-duplex bi-directional subcarrier multiplexing (SCM)-wavelength division multiplexed (WDM) visible light communication (VLC) system based on commercially available red-green-blue (RGB) light emitting diode (LED) and phosphor-based LED (P-LED) with 575-Mb/s upstream transmission.
Abstract: We propose and experimentally demonstrate a novel full-duplex bi-directional subcarrier multiplexing (SCM)-wavelength division multiplexing (WDM) visible light communication (VLC) system based on commercially available red-green-blue (RGB) light emitting diode (LED) and phosphor-based LED (P-LED) with 575-Mb/s downstream and 225-Mb/s upstream transmission, employing various modulation orders of quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing (OFDM). For the downlink, red and green colors/wavelengths are assigned to carry useful information, while blue chip is just kept lighting to maintain the white color illumination, and for the uplink, the low-cost P-LED is implemented. In this demonstration, pre-equalization and post-equalization are also adopted to compensate the severe frequency response of LEDs. Using this scheme, 4-user downlink and 1-user uplink transmission can be achieved. Furthermore, it can support more users by adjusting the bandwidth of each sub-channel. Bit error rates (BERs) of all links are below pre-forward-error-correction (pre-FEC) threshold of 3.8x 10−3 after 66-cm free-space delivery. The results show that this scheme has great potential in the practical VLC system.

Journal ArticleDOI
01 Dec 2013
TL;DR: It is revealed that the peak power constraint imposed on each OFDM SC as well as the number of users in the system play key roles in the rate-energy performance comparison by the two proposed schemes.
Abstract: In this paper, we study the optimal design for simultaneous wireless information and power transfer (SWIPT) in downlink multiuser orthogonal frequency division multiplexing (OFDM) systems, where the users harvest energy and decode information using the same signals received from a fixed access point (AP). For information transmission, we consider two types of multiple access schemes, namely, time division multiple access (TDMA) and orthogonal frequency division multiple access (OFDMA). At the receiver side, due to the practical limitation that circuits for harvesting energy from radio signals are not yet able to decode the carried information directly, each user applies either time switching (TS) or power splitting (PS) to coordinate the energy harvesting (EH) and information decoding (ID) processes. For the TDMA-based information transmission, we employ TS at the receivers; for the OFDMA-based information transmission, we employ PS at the receivers. Under the above two scenarios, we address the problem of maximizing the weighted sum-rate over all users by varying the time/frequency power allocation and either TS or PS ratio, subject to a minimum harvested energy constraint on each user as well as a peak and/or total transmission power constraint. For the TS scheme, by an appropriate variable transformation the problem is reformulated as a convex problem, for which the optimal power allocation and TS ratio are obtained by the Lagrange duality method. For the PS scheme, we propose an iterative algorithm to optimize the power allocation, subcarrier (SC) allocation and the PS ratio for each user. The performances of the two schemes are compared numerically as well as analytically for the special case of single-user setup. It is revealed that the peak power constraint imposed on each OFDM SC as well as the number of users in the system play key roles in the rate-energy performance comparison by the two proposed schemes.

Journal ArticleDOI
TL;DR: The proposed time-frequency training OFDM (TFT-OFDM) transmission scheme achieves higher spectral efficiency as well as the coded bit error rate performance close to the ergodic channel capacity in mobile environments.
Abstract: Large-scale orthogonal frequency division multiplexing (OFDM) multiple-input multiple-output (MIMO) is a promising candidate to achieve the spectral efficiency up to several tens of bps/Hz for future wireless communications. One key challenge to realize practical large-scale OFDM MIMO systems is high-dimensional channel estimation in mobile multipath channels. In this paper, we propose the time-frequency training OFDM (TFT-OFDM) transmission scheme for large-scale MIMO systems, where each TFT-OFDM symbol without cyclic prefix adopts the time-domain training sequence (TS) and the frequency-domain orthogonal grouped pilots as the time-frequency training information. At the receiver, the corresponding time-frequency joint channel estimation method is proposed to accurately track the channel variation, whereby the received time-domain TS is used for path delays estimation without interference cancellation, while the path gains are acquired by the frequency-domain pilots. The channel property that path delays vary much slower than path gains is further exploited to improve the estimation performance, and the sparse nature of wireless channel is utilized to acquire the path gains by very few pilots. We also derive the theoretical Cramer-Rao lower bound (CRLB) of the proposed channel estimator. Compared with conventional large-scale OFDM MIMO systems, the proposed TFT-OFDM MIMO scheme achieves higher spectral efficiency as well as the coded bit error rate performance close to the ergodic channel capacity in mobile environments.

Journal ArticleDOI
TL;DR: To combat the intercarrier interference (ICI) caused by highly dynamic Doppler spectrum in real orthogonal frequency division multiplexing based V2V systems, a new type of ICI cancellation scheme, named as precoding based cancellation (PBC) scheme is proposed.
Abstract: In this paper, we propose a new regular-shaped geometry-based stochastic model (RS-GBSM) for non-isotropic scattering wideband multiple-input multiple-output vehicle-to-vehicle (V2V) Ricean fading channels. By correcting the unrealistic assumption widely used in current RS-GBSMs, the proposed model can more practically study the impact of the vehicular traffic density on channel statistics for different time delays. From the proposed model, we derive the Doppler power spectral density (PSD) and find that highly dynamic Doppler spectrum appears for V2V channels. Excellent agreement is achieved between the derived Doppler PSD and measured data, demonstrating the utility of the proposed model. To combat the intercarrier interference (ICI) caused by highly dynamic Doppler spectrum in real orthogonal frequency division multiplexing based V2V systems, this paper proposes a new type of ICI cancellation scheme, named as precoding based cancellation (PBC) scheme. The proposed scheme can be easily implemented into real V2V systems with the same ICI mitigation performance as the current best ICI cancellation scheme that has high complexity. To further improve the performance of the proposed PBC scheme, a new phase rotation aided (PRA) method, namely constant PRA (CPRA) method, is proposed. Compared with the existing PRA method, the CPRA method has better performance and much less implementation complexity. Therefore, the proposed PBC scheme with the CPRA method is the best ICI cancellation scheme for real V2V systems.

Proceedings ArticleDOI
14 Apr 2013
TL;DR: This paper shows that exploiting the channel response from multiple Orthogonal Frequency-Division Multiplexing (OFDM) subcarriers can provide fine-grained channel information and achieve higher bit generation rate for both static and mobile cases in real-world scenarios, and develops a Channel Gain Complement (CGC) assisted secret key extraction scheme to cope with channel non-reciprocity encountered in practice.
Abstract: Securing wireless communication remains challenging in dynamic mobile environments due to the shared nature of wireless medium and lacking of fixed key management infrastructures. Generating secret keys using physical layer information thus has drawn much attention to complement traditional cryptographic-based methods. Although recent work has demonstrated that Received Signal Strength (RSS) based secret key extraction is practical, existing RSS-based key generation techniques are largely limited in the rate they generate secret bits and are mainly applicable to mobile wireless networks. In this paper, we show that exploiting the channel response from multiple Orthogonal Frequency-Division Multiplexing (OFDM) subcarriers can provide fine-grained channel information and achieve higher bit generation rate for both static and mobile cases in real-world scenarios. We further develop a Channel Gain Complement (CGC) assisted secret key extraction scheme to cope with channel non-reciprocity encountered in practice. Our extensive experiments using WiFi networks in both indoor as well as outdoor environments demonstrate that our approach can achieve significantly faster secret bit generation rate at 60 ~ 90bit/packet, and is resilient to malicious attacks identified to be harmful to RSS-based techniques including predictable channel attack and stalking attack.

Journal ArticleDOI
TL;DR: The main objective is to point out the state-of-the-art on research activity for SIC-OF(C)DM systems, applied on a variety of well-known network implementations, such as cellular, ad hoc and infrastructure-based platforms.
Abstract: Interference plays a crucial role for performance degradation in communication networks nowadays. An appealing approach to interference avoidance is the Interference Cancellation (IC) methodology. Particularly, the Successive IC (SIC) method represents the most effective IC-based reception technique in terms of Bit-Error-Rate (BER) performance and, thus, yielding to the overall system robustness. Moreover, SIC in conjunction with Orthogonal Frequency Division Multiplexing (OFDM), in the context of SIC-OFDM, is shown to approach the Shannon capacity when single-antenna infrastructures are applied while this capacity limit can be further extended with the aid of multiple antennas. Recently, SIC-based reception has studied for Orthogonal Frequency and Code Division Multiplexing or (spread-OFDM systems), namely OFCDM. Such systems provide extremely high error resilience and robustness, especially in multi-user environments. In this paper, we present a comprehensive survey on the performance of SIC for single- and multiple-antenna OFDM and spread OFDM (OFCDM) systems. Thereby, we focus on all the possible OFDM formats that have been developed so far. We study the performance of SIC by examining closely two major aspects, namely the BER performance and the computational complexity of the reception process, thus striving for the provision and optimization of SIC. Our main objective is to point out the state-of-the-art on research activity for SIC-OF(C)DM systems, applied on a variety of well-known network implementations, such as cellular, ad hoc and infrastructure-based platforms. Furthermore, we introduce a Performance-Complexity Tradeoff (PCT) in order to indicate the contribution of the approaches studied in this paper. Finally, we provide analytical performance comparison tables regarding to the surveyed techniques with respect to the PCT level.

Posted Content
TL;DR: In this paper, the optimal design for simultaneous wireless information and power transfer (SWIPT) in downlink multiuser orthogonal frequency division multiplexing (OFDM) systems is studied, where each user applies either time switching (TS) or power splitting (PS) to coordinate the EH and information decoding (ID) processes.
Abstract: In this paper, we study the optimal design for simultaneous wireless information and power transfer (SWIPT) in downlink multiuser orthogonal frequency division multiplexing (OFDM) systems. For information transmission, we consider two types of multiple access schemes, namely, time division multiple access (TDMA) and orthogonal frequency division multiple access (OFDMA). At the receiver side, due to the practical limitation that circuits for harvesting energy from radio signals are not yet able to decode the carried information directly, each user applies either time switching (TS) or power splitting (PS) to coordinate the energy harvesting (EH) and information decoding (ID) processes. For the TDMA-based information transmission, we employ TS at the receivers; for the OFDMA-based information transmission, we employ PS at the receivers. Under the above two scenarios, we address the problem of maximizing the weighted sum-rate over all users by varying the time/frequency power allocation and either TS or PS ratio, subject to a minimum harvested energy constraint on each user as well as a peak and/or total transmission power constraint. For the TS scheme, by an appropriate variable transformation the problem is reformulated as a convex problem, for which the optimal power allocation and TS ratio are obtained by the Lagrange duality method. For the PS scheme, we propose an iterative algorithm to optimize the power allocation, subcarrier (SC) allocation and the PS ratio for each user. The performances of the two schemes are compared numerically as well as analytically for the special case of single-user setup. It is revealed that the peak power constraint imposed on each OFDM SC as well as the number of users in the system play a key role in the rate-energy performance comparison by the two proposed schemes.

Journal ArticleDOI
TL;DR: In this article, the authors investigated an orthogonal frequency division multiplexing (OFDM)-based downlink transmission scheme for large-scale multi-user (MU) multiple-input multiple-output (MIMO) wireless systems.
Abstract: We investigate an orthogonal frequency-division multiplexing (OFDM)-based downlink transmission scheme for large-scale multi-user (MU) multiple-input multiple-output (MIMO) wireless systems. The use of OFDM causes a high peak-to-average (power) ratio (PAR), which necessitates expensive and power-inefficient radio-frequency (RF) components at the base station. In this paper, we present a novel downlink transmission scheme, which exploits the massive degrees-of-freedom available in large-scale MU-MIMO-OFDM systems to achieve low PAR. Specifically, we propose to jointly perform MU precoding, OFDM modulation, and PAR reduction by solving a convex optimization problem. We develop a corresponding fast iterative truncation algorithm (FITRA) and show numerical results to demonstrate tremendous PAR-reduction capabilities. The significantly reduced linearity requirements eventually enable the use of low-cost RF components for the large-scale MU-MIMO-OFDM downlink.

Posted Content
TL;DR: In this article, a review of the existing preamble structures and associated channel estimation methods is given, for both single- (SISO) and multiple-antenna (MIMO) systems.
Abstract: Filter bank-based multicarrier communications (FBMC) have recently attracted increased interest in both wired (e.g., xDSL, PLC) and wireless (e.g., cognitive radio) applications, due to their enhanced flexibility, higher spectral efficiency, and better spectral containment compared to conventional OFDM. A particular type of FBMC, the so-called FBMC/OQAM or OFDM/OQAM system, consisting of pulse shaped OFDM carrying offset QAM (OQAM) symbols, has received increasing attention due to, among other features, its higher spectral efficiency and implementation simplicity. It suffers, however, from an imaginary inter-carrier/inter-symbol interference that complicates signal processing tasks such as channel estimation. This paper focuses on channel estimation for OFDM/OQAM systems based on a known preamble. A review of the existing preamble structures and associated channel estimation methods is given, for both single- (SISO) and multiple-antenna (MIMO) systems. The various preambles are compared via simulations in both mildly and highly frequency selective channels.

Journal ArticleDOI
TL;DR: Compared with OFDM, the CAP scheme shows competitive performance and provides an alternative spectrally efficient modulation for next generation optical wireless networks.
Abstract: We experimentally demonstrate a visible light communication (VLC) system based on a single commercially available RGB-type LED. High spectrally efficient carrierless amplitude and phase (CAP) modulation and orthogonal frequency-division multiplexing (OFDM) are adopted in the intensity-modulation and direct-detection VLC system of limited bandwidth. In order to achieve higher capacity of the uneven-frequency-response LED-based VLC system, OFDM signals are combined with the bit- and power-loading techniques, and CAP signals of various modulation are pre-emphasized to modulate one of the RGB chips. To reach the BER of less than 10-3, CAP and OFDM signals demonstrate the maximum data rates of 1.32 and 1.08 Gb/s, respectively, employing the blue chip. In addition to spectrally efficient formats, the wavelength-division-multiplexing (WDM) scheme is applied to further increase the capacity. After individually optimizing RGB chips, the maximum aggregate data rates of CAP and OFDM are 3.22 and 2.93 Gb/s, respectively, in our RGB-LED-based WDM VLC system. Hence, compared with OFDM, the CAP scheme shows competitive performance and provides an alternative spectrally efficient modulation for next generation optical wireless networks.

Patent
28 Feb 2013
TL;DR: In this paper, an apparatus for wireless communication is provided, which includes a receiver configured to receive a wireless signal comprising a packet, formed from at least one orthogonal frequency division multiplexing (OFDM) symbol comprising thirty-two tones.
Abstract: Systems, methods, and devices for wireless communication. In one aspect, an apparatus for wireless communication is provided. The apparatus includes a receiver configured to receive a wireless signal comprising a packet. At least a portion of the wireless signal is configured to be received over a bandwidth lower than or equal to 1.25 MHz. The packet is formed from at least one orthogonal frequency-division multiplexing (OFDM) symbol comprising thirty-two tones. The thirty-two tones correspond to frequency subcarriers within the bandwidth. The thirty-two tones of the at least one OFDM symbol are allocated as: twenty-four data tones, two pilot tones, five guard tones, and one direct current (DC) tone. The apparatus includes a processor configured to evaluate the wireless signal. The processor includes a transform module configured to convert the at least one OFDM symbol into a frequency domain signal using a thirty-two point mode.

Journal ArticleDOI
TL;DR: In this paper, the Bussgang theorem is employed to characterize the impact of nonlinear distortions on normally distributed signals in an intensity modulation and direct detection optical wireless communication system based on orthogonal frequency division multiplexing.
Abstract: This paper presents a complete analytical framework for modeling memoryless nonlinear effects in an intensity modulation and direct detection optical wireless communication system based on orthogonal frequency division multiplexing. The theory employs the Bussgang theorem, which is widely accepted as a means to characterize the impact of nonlinear distortions on normally distributed signals. This paper proposes a new method to generalize this approach, and it describes how a closed-form analytical expression for the system bit error rate can be obtained for an arbitrary memoryless distortion. Major distortion effects at the transmitter stage such as quantization and nonlinearity from the light emitting diode are analyzed. Four known orthogonal-frequency-division-multiplexing-based modulation schemes for optical communication are considered in this paper: direct-current-biased optical OFDM, asymmetrically clipped optical OFDM, pulse-amplitude-modulated discrete multitone modulation, and unipolar orthogonal frequency division multiplexing.

Journal ArticleDOI
04 Sep 2013
TL;DR: The proposed techniques relax the requirement for high speed analog circuits, leading to less power consumption while minimizing the increase of hardware size.
Abstract: A 60GHz short-range wireless system offers new opportunities for achieving wireless high-definition video links and multi-Gb/s wireless data transfer. Recent works have realized a 60GHz transceiver by means of a cost-effective CMOS process [1-3], but using a 60GHz system in mobile terminals poses the difficult challenge of achieving low power consumption as well as small form factor. The publication [3] achieves a power consumption of less than 756mW, but uses a simple MAC protocol incompatible with global standards and also suffers from a limited distance of less than 4cm. This paper presents a fully integrated transceiver chipset based on WiGig/IEEE802.11ad standards targeting mobile usage. The chipset is developed for a single-carrier (SC) modulation, which is suitable for reduced power consumption as compared to using OFDM modulation. However, the SC modulation is sensitive to in-band amplitude variation, mainly made worse by the gain variation of analog circuits and multipath delay spread. In order to compensate for those gain variations, the proposed chipset employs built-in TX in-band calibration and an RX frequency domain equalizer (FDE). The proposed techniques can relax the requirement for high speed analog circuits, leading to less power consumption while minimizing the increase of hardware size.

Proceedings ArticleDOI
12 Aug 2013
TL;DR: This work presents a complete Orthogonal Frequency Division Multiplexing (OFDM) receiver implemented in GNU Radio and fitted for operation with an Ettus USRP N210, the first prototype of a GNU Radio based OFDM receiver for this technology.
Abstract: Experimental research on wireless communication protocols frequently requires full access to all protocol layers, down to and including the physical layer. Software Defined Radio (SDR) hardware platforms, together with real-time signal processing frameworks, offer a basis to implement transceivers that can allow such experimentation and sophisticated measurements. We present a complete Orthogonal Frequency Division Multiplexing (OFDM) receiver implemented in GNU Radio and fitted for operation with an Ettus USRP N210. To the best of our knowledge, this is the first prototype of a GNU Radio based OFDM receiver for this technology. Our receiver comprises all layers up to parsing the MAC header and extracting the payload of IEEE 802.11a/g/p networks. It supports both WiFi with a bandwidth of 20 MHz and IEEE 802.11p DSRC with a bandwidth of 10 MHz. We validated and verified our implementation by means of interoperability tests, and present representative performance measurements. By making the code available as Open Source we provide an easy-to-access system that can be readily used for experimenting with novel signal processing algorithms.

Journal ArticleDOI
TL;DR: Although the required number of additions in the proposed algorithm is higher than those in conventional methods, the simulation results show that the proposed approach has excellent performance of timing synchronization in several channel models at signal-to-noise ratio (SNR) smaller than 6 dB.
Abstract: In this article, we propose unit vectors in the high dimensional Cartesian coordinate system as the preamble, and then propose a semiblind timing synchronization and channel estimation scheme for orthogonal frequency division multiplexing (OFDM) systems. Due to the lack of useful information in the time-domain, a frequency-domain timing synchronization algorithm is proposed. The proposed semiblind approach consists of three stages. In the first stage, a coarse timing offset related to the delayed timing of the path with the maximum gain in multipath fading channels is obtained. Then, a fine time adjustment algorithm is performed to find the actual delayed timing in channels. Finally, the channel response in the frequency-domain is obtained based on the final timing estimate. Although the required number of additions in the proposed algorithm is higher than those in conventional methods, the simulation results show that the proposed approach has excellent performance of timing synchronization in several channel models at signal-to-noise ratio (SNR) smaller than 6 dB. In addition, for a low-density parity-check coded single-input single-output OFDM system, our proposed approach has better bit-error-rate performance than conventional approaches for SNR varying from 3 to 8 dB.

Journal ArticleDOI
TL;DR: A review of the existing preamble structures and associated channel estimation methods is given, for both single- (SISO) and multiple-antenna (MIMO) systems.

Journal ArticleDOI
TL;DR: Simulation results show that after three iterations, the original OICF algorithm can achieve the desired PAPR while the simplified one exhibits almost the same performance.
Abstract: Iterative clipping and filtering (ICF) is a well-known technique to reduce the peak-to-average power ratio (PAPR) of orthogonal frequency division multiplexing (OFDM) signals. Recently, Wang and Luo investigated the clipped signal and proposed a modified algorithm called optimized ICF (OICF). This is an optimal algorithm since it can achieve the required PAPR reduction with minimum in-band distortion and far fewer iterations. However, OICF needs to solve a convex optimization problem with O(N3) complexity, where N represents the number of subcarriers. In this paper, instead of analyzing the clipped signal, we study the clipping noise and propose a simplified OICF algorithm. In the new algorithm, solving the convex optimization problem is approximated by some simple algebraic operations and the computational complexity reduces to O(N). Simulation results show that after three iterations, the original OICF algorithm can achieve the desired PAPR while the simplified one exhibits almost the same performance: for a 128-subcarrier and quadrature phase shift keying (QPSK) modulated OFDM system, the PAPR-reduction performance difference between the two algorithms are 5×10-3dB at a 10-4 clipping probability and the bit-error-rate performance difference is 6×10-3 dB at a 10-7 error probability.