scispace - formally typeset
Search or ask a question
Topic

Orthogonal wavelet

About: Orthogonal wavelet is a research topic. Over the lifetime, 1161 publications have been published within this topic receiving 59747 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, it is shown that the difference of information between the approximation of a signal at the resolutions 2/sup j+1/ and 2 /sup j/ (where j is an integer) can be extracted by decomposing this signal on a wavelet orthonormal basis of L/sup 2/(R/sup n/), the vector space of measurable, square-integrable n-dimensional functions.
Abstract: Multiresolution representations are effective for analyzing the information content of images. The properties of the operator which approximates a signal at a given resolution were studied. It is shown that the difference of information between the approximation of a signal at the resolutions 2/sup j+1/ and 2/sup j/ (where j is an integer) can be extracted by decomposing this signal on a wavelet orthonormal basis of L/sup 2/(R/sup n/), the vector space of measurable, square-integrable n-dimensional functions. In L/sup 2/(R), a wavelet orthonormal basis is a family of functions which is built by dilating and translating a unique function psi (x). This decomposition defines an orthogonal multiresolution representation called a wavelet representation. It is computed with a pyramidal algorithm based on convolutions with quadrature mirror filters. Wavelet representation lies between the spatial and Fourier domains. For images, the wavelet representation differentiates several spatial orientations. The application of this representation to data compression in image coding, texture discrimination and fractal analysis is discussed. >

20,028 citations

Book
01 May 1992
TL;DR: This paper presents a meta-analyses of the wavelet transforms of Coxeter’s inequality and its applications to multiresolutional analysis and orthonormal bases.
Abstract: Introduction Preliminaries and notation The what, why, and how of wavelets The continuous wavelet transform Discrete wavelet transforms: Frames Time-frequency density and orthonormal bases Orthonormal bases of wavelets and multiresolutional analysis Orthonormal bases of compactly supported wavelets More about the regularity of compactly supported wavelets Symmetry for compactly supported wavelet bases Characterization of functional spaces by means of wavelets Generalizations and tricks for orthonormal wavelet bases References Indexes.

16,073 citations

Book
01 Jan 1992
TL;DR: An Overview: From Fourier Analysis to Wavelet Analysis, Multiresolution Analysis, Splines, and Wavelets.
Abstract: An Overview: From Fourier Analysis to Wavelet Analysis. The Integral Wavelet Transform and Time-Frequency Analysis. Inversion Formulas and Duals. Classification of Wavelets. Multiresolution Analysis, Splines, and Wavelets. Wavelet Decompositions and Reconstructions. Fourier Analysis: Fourier and Inverse Fourier Transforms. Continuous-Time Convolution and the Delta Function. Fourier Transform of Square-Integrable Functions. Fourier Series. Basic Convergence Theory and Poisson's Summation Formula. Wavelet Transforms and Time-Frequency Analysis: The Gabor Transform. Short-Time Fourier Transforms and the Uncertainty Principle. The Integral Wavelet Transform. Dyadic Wavelets and Inversions. Frames. Wavelet Series. Cardinal Spline Analysis: Cardinal Spline Spaces. B-Splines and Their Basic Properties. The Two-Scale Relation and an Interpolatory Graphical Display Algorithm. B-Net Representations and Computation of Cardinal Splines. Construction of Spline Approximation Formulas. Construction of Spline Interpolation Formulas. Scaling Functions and Wavelets: Multiresolution Analysis. Scaling Functions with Finite Two-Scale Relations. Direct-Sum Decompositions of L2(R). Wavelets and Their Duals. Linear-Phase Filtering. Compactly Supported Wavelets. Cardinal Spline-Wavelets: Interpolaratory Spline-Wavelets. Compactly Supported Spline-Wavelets. Computation of Cardinal Spline-Wavelets. Euler-Frobenius Polynomials. Error Analysis in Spline-Wavelet Decomposition. Total Positivity, Complete Oscillation, Zero-Crossings. Orthogonal Wavelets and Wavelet Packets: Examples of Orthogonal Wavelets. Identification of Orthogonal Two-Scale Symbols. Construction of Compactly Supported Orthogonal Wavelets. Orthogonal Wavelet Packets. Orthogonal Decomposition of Wavelet Series. Notes. References. Subject Index. Appendix.

3,992 citations

Book ChapterDOI
01 Jan 1995
TL;DR: A reconstruction subject to far weaker Gibbs phenomena than thresholding based De-Noising using the traditional orthogonal wavelet transform is produced.
Abstract: De-Noising with the traditional (orthogonal, maximally-decimated) wavelet transform sometimes exhibits visual artifacts; we attribute some of these—for example, Gibbs phenomena in the neighborhood of discontinuities—to the lack of translation invariance of the wavelet basis. One method to suppress such artifacts, termed “cycle spinning” by Coifman, is to “average out” the translation dependence. For a range of shifts, one shifts the data (right or left as the case may be), De-Noises the shifted data, and then unshifts the de-noised data. Doing this for each of a range of shifts, and averaging the several results so obtained, produces a reconstruction subject to far weaker Gibbs phenomena than thresholding based De-Noising using the traditional orthogonal wavelet transform.

1,888 citations

Journal ArticleDOI
TL;DR: Two examples of jointly shiftable transforms that are simultaneously shiftable in more than one domain are explored and the usefulness of these image representations for scale-space analysis, stereo disparity measurement, and image enhancement is demonstrated.
Abstract: One of the major drawbacks of orthogonal wavelet transforms is their lack of translation invariance: the content of wavelet subbands is unstable under translations of the input signal. Wavelet transforms are also unstable with respect to dilations of the input signal and, in two dimensions, rotations of the input signal. The authors formalize these problems by defining a type of translation invariance called shiftability. In the spatial domain, shiftability corresponds to a lack of aliasing; thus, the conditions under which the property holds are specified by the sampling theorem. Shiftability may also be applied in the context of other domains, particularly orientation and scale. Jointly shiftable transforms that are simultaneously shiftable in more than one domain are explored. Two examples of jointly shiftable transforms are designed and implemented: a 1-D transform that is jointly shiftable in position and scale, and a 2-D transform that is jointly shiftable in position and orientation. The usefulness of these image representations for scale-space analysis, stereo disparity measurement, and image enhancement is demonstrated. >

1,448 citations


Network Information
Related Topics (5)
Feature extraction
111.8K papers, 2.1M citations
77% related
Fuzzy logic
151.2K papers, 2.3M citations
76% related
Artificial neural network
207K papers, 4.5M citations
74% related
Image processing
229.9K papers, 3.5M citations
73% related
Control theory
299.6K papers, 3.1M citations
72% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20232
20227
202115
202016
201923
201829