scispace - formally typeset


Orthorhombic crystal system

About: Orthorhombic crystal system is a(n) research topic. Over the lifetime, 26421 publication(s) have been published within this topic receiving 471993 citation(s). The topic is also known as: orthorhombic.

More filters
Journal ArticleDOI
Abstract: The crystal structure of LiSbWO6 is solved from X-ray powder diffraction data. The cell is orthorhombic (space group Pbcn, Z = 4) with a = 4.6664(1) A , b = 17.4435(5) A , c = 4.9941(2) A . Initial positional parameters for antimony and tungsten were obtained from direct methods applied on 307 reflexions which were derived from a modified Rietveld analysis working without structural model. The structure was refined using Rietveld profile refinement principles ; the final reliability factors (%) are Rx = 2.1, RWP = 6.5. The structure derives from PbO2-α by a tripling of the b axis of PbO2 with a full cationic order, unlike the columbite structure which is related to PbO2-α by a tripling of the a-axis.

2,152 citations

Journal ArticleDOI
Abstract: An indexing program, TREOR, mainly based on trial-and-error methods is described. The program contains separate routines for cubic, tetragonal, hexagonal, orthorhombic, monoclinic and triclinic symmetries. Ten years usage has been analysed to improve the original program. For monoclinic indexing a specific short-axis test has been developed. The over-all success rate of the program has been found to be better than 90%, and considerably more for orthorhombic and higher symmetries.

1,611 citations

Journal ArticleDOI
TL;DR: Analysis of the hydration process by solid-state NMR has clearly indicated that the trapped water molecules interact with the carboxylate groups through hydrogen bonds, but do not affect the hydroxyl species bridging the aluminum atoms.
Abstract: Aluminum 1,4-benzenedicarboxylate Al(OH)[O2CC6H4CO2]⋅ [HO2CC6H4CO2H]0.70 or MIL-53 as (Al) has been hydrothermally synthesized by heating a mixture of aluminum nitrate, 1,4-benzenedicarboxylic acid, and water, for three days at 220 °C. Its 3 D framework is built up of infinite trans chains of corner-sharing AlO4(OH)2 octahedra. The chains are interconnected by the 1,4-benzenedicarboxylate groups, creating 1 D rhombic-shaped tunnels. Disordered 1,4-benzenedicarboxylic acid molecules are trapped inside these tunnels. Their evacuation upon heating, between 275 and 420 °C, leads to a nanoporous open-framework (MIL-53 ht (Al) or Al(OH)[O2CC6H4CO2]) with empty pores of diameter 8.5 A. This solid exhibits a Langmuir surface area of 1590(1) m2 g−1 together with a remarkable thermal stability, since it starts to decompose only at 500 °C. At room temperature, the solid reversibly absorbs water in its tunnels, causing a very large breathing effect and shrinkage of the pores. Analysis of the hydration process by solid-state NMR (1H, 13C, 27Al) has clearly indicated that the trapped water molecules interact with the carboxylate groups through hydrogen bonds, but do not affect the hydroxyl species bridging the aluminum atoms. The hydrogen bonds between water and the oxygen atoms of the framework are responsible for the contraction of the rhombic channels. The structures of the three forms have been determined by means of powder X-ray diffraction analysis. Crystal data for MIL-53 as (Al) are as follows: orthorhombic system, Pnma (no. 62), a = 17.129(2), b = 6.628(1), c = 12.182(1) A; for MIL-53 ht (Al), orthorhombic system, Imma (no. 74), a = 6.608(1), b = 16.675(3), c = 12.813(2) A; for MIL-53 lt (Al), monoclinic system, Cc (no. 9), a = 19.513(2), b = 7.612(1), c = 6.576(1) A, β = 104.24(1)°.

1,531 citations

Journal ArticleDOI
Abstract: Giant magnetic-field-induced strain of about 9.5% was observed at ambient temperature in a magnetic field of less than 1 T in NiMnGa orthorhombic seven-layered martensitic phase. The strain proved to be caused by magnetic-field-controlled twin boundary motion. According to an analysis of x-ray diffraction data, the crystal structure of this phase is nearly orthorhombic, having lattice parameters a=0.619 nm, b=0.580 nm, and c=0.553 nm (in cubic parent phase coordinates) at ambient temperature. Seven-layer shuffling-type modulation along the (110)[110]p system was recorded. The results of mechanical tests and magnetic anisotropy property measurements are also reported.

1,422 citations

Journal ArticleDOI
Abstract: First principles calculations were performed to investigate the structural, elastic, and electronic properties of IrN2 for various space groups: cubic Fm-3m and Pa-3, hexagonal P3(2)21, tetragonal P4(2)/mnm, orthorhombic Pmmn, Pnnm, and Pnn2, and monoclinic P2(1)/c. Our calculation indicates that the P2(1)/c phase with arsenopyrite-type structure is energetically more stable than the other phases. It is semiconducting (the remaining phases are metallic) and contains diatomic N-N with the bond distance of 1.414 A. These characters are consistent with the experimental facts that IrN2 is in lower symmetry and nonmetallic. Our conclusion is also in agreement with the recent theoretical studies that the most stable phase of IrN2 is monoclinic P2(1)/c. The calculated bulk modulus of 373 GPa is also the highest among the considered space groups. It matches the recent theoretical values of 357 GPa within 4.3% and of 402 GPa within 7.8%, but smaller than the experimental value of 428 GPa by 14.7%. Chemical bonding and potential displacive phase transitions are discussed for IrN2. For IrN3, cubic skutterudite structure (Im-3) was assumed.

1,412 citations

Network Information
Related Topics (5)
Raman spectroscopy

122.6K papers, 2.8M citations

90% related

213.4K papers, 3.6M citations

89% related
Amorphous solid

117K papers, 2.2M citations

89% related
Band gap

86.8K papers, 2.2M citations

89% related
Thin film

275.5K papers, 4.5M citations

86% related
No. of papers in the topic in previous years