scispace - formally typeset
Search or ask a question
Topic

Oryza sativa

About: Oryza sativa is a research topic. Over the lifetime, 12272 publications have been published within this topic receiving 303574 citations. The topic is also known as: Asopa de macaco & Rice, paddy, sake, sea-grass matting.


Papers
More filters
Journal ArticleDOI
05 Apr 2002-Science
TL;DR: A draft sequence of the rice genome for the most widely cultivated subspecies in China, Oryza sativa L. ssp.indica, by whole-genome shotgun sequencing is produced, with a large proportion of rice genes with no recognizable homologs due to a gradient in the GC content of rice coding sequences.
Abstract: We have produced a draft sequence of the rice genome for the most widely cultivated subspecies in China, Oryza sativa L. ssp. indica, by whole-genome shotgun sequencing. The genome was 466 megabases in size, with an estimated 46,022 to 55,615 genes. Functional coverage in the assembled sequences was 92.0%. About 42.2% of the genome was in exact 20-nucleotide oligomer repeats, and most of the transposons were in the intergenic regions between genes. Although 80.6% of predicted Arabidopsis thaliana genes had a homolog in rice, only 49.4% of predicted rice genes had a homolog in A. thaliana. The large proportion of rice genes with no recognizable homologs is due to a gradient in the GC-content of rice coding sequences.

4,064 citations

Journal ArticleDOI
TL;DR: A large number of morphologically normal, fertile, transgenic rice plants were obtained by co-cultivation of rice tissues with Agrobacterium tumefaciens, and sequence analysis revealed that the boundaries of the T-DNA in transgenic Rice plants were essentially identical to those intransgenic dicotyledons.
Abstract: Summary A large number of morphologically normal, fertile, transgenic rice plants were obtained by co-cultivation of rice tissues with Agrobacterium tumefaciens The efficiency of transformation was similar to that obtained by the methods used routinely for transformation of dicotyledons with the bacterium Stable integration, expression and inheritance of transgenes were demonstrated by molecular and genetic analysis of transformants in the R0, R1 and R2 generations Sequence analysis revealed that the boundaries of the T-DNA in transgenic rice plants were essentially identical to those in transgenic dicotyledons Calli induced from scutella were very good starting materials A strain of A tumefaciens that carried a so-called ‘super-binary’ vector gave especially high frequencies of transformation of various cultivars of japonica rice that included Koshihikari, which normally shows poor responses in tissue culture

3,475 citations

Journal ArticleDOI
Takashi Matsumoto1, Jianzhong Wu1, Hiroyuki Kanamori1, Yuichi Katayose1  +262 moreInstitutions (25)
11 Aug 2005-Nature
TL;DR: A map-based, finished quality sequence that covers 95% of the 389 Mb rice genome, including virtually all of the euchromatin and two complete centromeres, and finds evidence for widespread and recurrent gene transfer from the organelles to the nuclear chromosomes.
Abstract: Rice, one of the world's most important food plants, has important syntenic relationships with the other cereal species and is a model plant for the grasses. Here we present a map-based, finished quality sequence that covers 95% of the 389 Mb genome, including virtually all of the euchromatin and two complete centromeres. A total of 37,544 non-transposable-element-related protein-coding genes were identified, of which 71% had a putative homologue in Arabidopsis. In a reciprocal analysis, 90% of the Arabidopsis proteins had a putative homologue in the predicted rice proteome. Twenty-nine per cent of the 37,544 predicted genes appear in clustered gene families. The number and classes of transposable elements found in the rice genome are consistent with the expansion of syntenic regions in the maize and sorghum genomes. We find evidence for widespread and recurrent gene transfer from the organelles to the nuclear chromosomes. The map-based sequence has proven useful for the identification of genes underlying agronomic traits. The additional single-nucleotide polymorphisms and simple sequence repeats identified in our study should accelerate improvements in rice production.

3,423 citations

Journal Article
01 Jan 2002-Science
TL;DR: A draft sequence of the rice genome for the most widely cultivated subspecies in China, Oryza sativa L. ssp. indica, by whole-genome shotgun sequencing was presented in this paper.
Abstract: We have produced a draft sequence of the rice genome for the most widely cultivated subspecies in China, Oryza sativa L. ssp. indica, by whole-genome shotgun sequencing. The genome was 466 megabases in size, with an estimated 46,022 to 55,615 genes. Functional coverage in the assembled sequences was 92.0%. About 42.2% of the genome was in exact 20-nucleotide oligomer repeats, and most of the transposons were in the intergenic regions between genes. Although 80.6% of predicted Arabidopsis thaliana genes had a homolog in rice, only 49.4% of predicted rice genes had a homolog in A. thaliana. The large proportion of rice genes with no recognizable homologs is due to a gradient in the GC content of rice coding sequences.

1,824 citations

Journal ArticleDOI
10 Aug 2006-Nature
TL;DR: The identification of a cluster of three genes at the Sub1 locus, encoding putative ethylene response factors, indicates that Sub1A-1 is a primary determinant of submergence tolerance in O. sativa ssp.
Abstract: Most Oryza sativa cultivars die within a week of complete submergence--a major constraint to rice production in south and southeast Asia that causes annual losses of over US 1 billion dollars and affects disproportionately the poorest farmers in the world. A few cultivars, such as the O. sativa ssp. indica cultivar FR13A, are highly tolerant and survive up to two weeks of complete submergence owing to a major quantitative trait locus designated Submergence 1 (Sub1) near the centromere of chromosome 9 (refs 3, 4, 5-6). Here we describe the identification of a cluster of three genes at the Sub1 locus, encoding putative ethylene response factors. Two of these genes, Sub1B and Sub1C, are invariably present in the Sub1 region of all rice accessions analysed. In contrast, the presence of Sub1A is variable. A survey identified two alleles within those indica varieties that possess this gene: a tolerance-specific allele named Sub1A-1 and an intolerance-specific allele named Sub1A-2. Overexpression of Sub1A-1 in a submergence-intolerant O. sativa ssp. japonica conferred enhanced tolerance to the plants, downregulation of Sub1C and upregulation of Alcohol dehydrogenase 1 (Adh1), indicating that Sub1A-1 is a primary determinant of submergence tolerance. The FR13A Sub1 locus was introgressed into a widely grown Asian rice cultivar using marker-assisted selection. The new variety maintains the high yield and other agronomic properties of the recurrent parent and is tolerant to submergence. Cultivation of this variety is expected to provide protection against damaging floods and increase crop security for farmers.

1,371 citations


Network Information
Related Topics (5)
Shoot
32.1K papers, 693.3K citations
91% related
Hordeum vulgare
20.3K papers, 717.5K citations
90% related
Germination
51.9K papers, 877.9K citations
88% related
Rhizosphere
21.9K papers, 756.3K citations
86% related
Soil fertility
33.7K papers, 859.4K citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023928
20222,171
2021605
2020783
2019680