scispace - formally typeset
Search or ask a question
Topic

Output impedance

About: Output impedance is a research topic. Over the lifetime, 11185 publications have been published within this topic receiving 134949 citations.


Papers
More filters
Journal ArticleDOI
Yun Liu1, Yong-Jiu Zhao1, Shaobin Liu1, Yonggang Zhou1, Yao Chen1 
TL;DR: In this paper, a general synthesis method is proposed for the design of multi-frequency impedance transformers (MFITs) for arbitrary frequency-dependent complex loads (FDCLs) by adopting the concept of mult-frequency inverters (MFIs).
Abstract: In this paper, a general synthesis method is proposed for the design of multi-frequency impedance transformers (MFITs) for arbitrary frequency-dependent complex loads (FDCLs) by adopting the concept of multi-frequency inverters (MFIs). An MFI, which is placed between two susceptance blocks, is constructed with a transmission line and two-side multi-frequency susceptances (MFSs), whose values at multiple frequencies are independently specified. By merging neighboring susceptances, we get a very simple Pi-shaped topology of MFITs, which in theory has no limitation on the number of matching frequencies. The MFS blocks are realized with one or more parallel shunt stubs, providing needed susceptance values at several specified frequencies. A genetic algorithm is used in extracting the circuit parameters of the parallel stubs. Several dual-, triple-, and quad-frequency impedance transformers for FDCLs are designed for illustrating the design methods. Experiment and simulation results are compared with good agreement, validating the feasibility of the theory. The designed impedance transformers are concise in circuit and compact in dimensions.

38 citations

Journal ArticleDOI
TL;DR: In this paper, a bulk-driven CMOS triode-based fully balanced operational transconductance amplifier (OTA) and its application to continuous-time filters are presented, which is linearly tunable with the feature of low distortion and high output impedance.
Abstract: In this paper we present a bulk-driven CMOS triode-based fully balanced operational transconductance amplifier (OTA) and its application to continuous-time filters. The proposed OTA is linearly tunable with the feature of low distortion and high output impedance. It can achieve wide input range without compromising large transconductance tuning interval. Using a 0.18 ¼m n-well CMOS process, we have implemented a third-order elliptic low-pass filter based on the proposed OTA. Both the simulation and measurement results are reported. The total harmonic distortion is more than -45 dB for fully differential input signals of up to 0.8 V peak---peak voltage. A dynamic range of 45 dB is obtained under the OTA noise integrated over 1 MHz.

38 citations

Journal ArticleDOI
04 Dec 2006
TL;DR: In this article, the stability and performance of a regulated converter is analyzed based on its closed-loop output impedance, and it is shown that the margins associated with the minor-loop gain do not generally match the margins of the output-voltage loop gain.
Abstract: The stability and performance of a regulated converter is analysed based on its closed-loop output impedance. System theory is used to obtain a set of transfer functions that define the internal stability of an interconnected system consisting of source and load converters. The internal stability is described in terms of the ratio of the output impedance of the source converter and the input impedance of the load converter known as the minor-loop gain. Thus, the closed-loop output impedance of a source converter can be used to define safe operating areas that avoid instabilities in the load impedance. It is shown that the margins associated with the minor-loop gain (i.e. the gain and phase margins) do not generally match the margins of the output-voltage loop gain. The relationship is especially weak at frequencies close to and beyond the crossover frequency of the loop gain. This means that the margins given to the minor-loop gain should be gradually increased as the voltage-loop-gain crossover frequency is approached so as to avoid performance degradation (i.e. changes in margins and crossover frequency) in the supply converter. Experimental evidence is provided based on a buck converter under voltage- and peak-current-mode control.

38 citations

Proceedings ArticleDOI
20 Jun 2005
TL;DR: In this paper, an adaptive virtual output impedance is proposed in order to achieve a proper reactive power sharing regardless of the line impedance unbalances and a soft-start operation is also included, avoiding the initial current peak, which results in a seamless hot-swap operation.
Abstract: In this paper, a method for the parallel operation of inverters in an ac-distributed system is proposed. The paper explores the control of active and reactive power flow through the analysis of the output impedance of the inverters and its impact on the power sharing. As a result, adaptive virtual output impedance is proposed in order to achieve a proper reactive power sharing regardless of the line impedance unbalances. A soft-start operation is also included, avoiding the initial current peak, which results in a seamless hot-swap operation. Active power sharing is achieved by adjusting the frequency in load transient situations only, thanks to which the proposed method obtains constant steady-state frequency and amplitude. As opposed to the conventional droop method, the transient response can be modified by acting on the main control parameters. Linear and nonlinear loads can be properly shared due to the addition of a current harmonic loop in the control strategy. Experimental results are presented from a two 6-kVA parallel-connected inverters system, showing the feasibility of the proposed approach.

38 citations

Journal ArticleDOI
TL;DR: In this paper, a theoretical analysis of the errors due to inductance effects is presented, on the basis of which the admissible limiting measuring frequency can be evaluated, and the effect of the size and surface area of the electrode on its intrinsic inductance is also evaluated.
Abstract: The high-frequency region of the impedance diagram of an electrochemical cell can be deformed by the inductance of the wiring and/or by the intrinsic inductance of the measuring cell. This effect can be noticeable even in the middle frequency range in the case of low impedance systems such as electrochemical power sources. A theoretical analysis of the errors due to inductance effects is presented here, on the basis of which the admissible limiting measuring frequency can be evaluated. Topology deformations due to the effect of inductance in the case of a single-step electrochemical reaction are studied by the simulation approach. It is shown that an inductance can not only change the actual values of the parameters (electrolytic resistance, double layer capacitance, reaction resistance), but can also substantially alter the shape of the impedance diagram, this leading to erroneous structure interpretations. The effect of the size and surface area of the electrode on its intrinsic inductance is also evaluated.

38 citations


Network Information
Related Topics (5)
Capacitor
166.6K papers, 1.4M citations
90% related
Voltage
296.3K papers, 1.7M citations
89% related
Amplifier
163.9K papers, 1.3M citations
87% related
Capacitance
69.6K papers, 1M citations
86% related
CMOS
81.3K papers, 1.1M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202347
2022140
2021182
2020285
2019366
2018377