scispace - formally typeset
Search or ask a question
Topic

Overpressure

About: Overpressure is a research topic. Over the lifetime, 3236 publications have been published within this topic receiving 34648 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors used scaled experiments, in which compressed air flows through sand packs, so as to model the deformation of overpressured wedges, and provided a new apparatus providing for a horizontally varying fluid pressure, for example, a linear variation, as in the critical taper model.
Abstract: The well-known model for the critical taper of an accretionary wedge includes overpressure as a first-order parameter. Fluid overpressures reduce frictional resistance at the base of a wedge but they also act as body forces on all material particles of the wedge, in addition to that of gravity. By means of sandbox modeling, many workers have tried to verify the predictions of the critical taper model, but few of them have so far incorporated true fluid pressures. We have used scaled experiments, in which compressed air flows through sand packs, so as to model the deformation of overpressured wedges. A new apparatus provides for a horizontally varying fluid pressure, for example, a linear variation, as in the critical taper model. We have done three series of experiments, involving horizontal shortening of homogeneous or multilayered sand models for various gradients of fluid pressure. As predicted by the critical taper model, the apical angle of the resulting wedge depends on the overpressure gradient. In homogeneous sand at a high overpressure gradient, deformation becomes diffuse and looks ductile. In multilayered models, detachments form beneath layers of low permeability, so that thrusts propagate rapidly toward the undeformed foreland. The efficiency of a detachment and its ability to propagate depend not only on the fluid pressure but also on the permeability ratios between the various layers.

58 citations

Journal ArticleDOI
TL;DR: In a water-wet petroleum reservoir, the overpressure in the hydrocarbon phase relative to the water phase is balanced by the elastic forces at the fluid interface (interfacial tension).
Abstract: In a water-wet petroleum reservoir with a water-wet seal, a continuous water phase will extend from the reservoir into the seal, and the pressure difference between the water phase in the uppermost pores of the reservoir and the water phase in the lowermost pores of the seal can therefore only be of an infinitesimal magnitude. This implies that any overpressure in a water-wet reservoir will not contribute to pushing the hydrocarbons through a water-wet seal, and overpressured water-wet reservoirs should therefore not be considered more prone to capillary leakage than normally pressured reservoirs. Within a water-wet petroleum reservoirs, the overpressure in the hydrocarbon phase relative to the water phase is balanced by the elastic forces at the fluid interface (interfacial tension). The overpressure in the hydrocarbon phase relative to the water phase therefore does not increase the risk of hydrofracturing the reservoir9s seal. This implies that the risk of hydrofracturing should not be increased as a function of hydrocarbon column height, and should not be considered to be higher for gas than it is for oil. When an upward-directed hydraulic gradient is present from a reservoir unit into the overlying seal, water will continuously move upwards from the reservoir unit and into the seal if both rocks are water-wet. This movement of water may lead to exsolution of gas above the reservoir unit, and the presence of free gas may be detected as gas chimneys on seismic sections. This mechanism will operate regardless of whether or not a hydrocarbon accumulation is present below the gas chimneys, and fracturing of the reservoir unit9s seal or capillary leakage of hydrocarbons are therefore not necessary conditions for the development of gas chimneys.

58 citations

Journal ArticleDOI
TL;DR: In this paper, the results of analog experiments of slope instability and ground deformations, recorded by the GBInSAR system on the western flank of the Stromboli volcano during the period 2009-2011 have been analyzed.

57 citations

Journal ArticleDOI
TL;DR: Results show that both the maximum overpressure and the rate of pressure rise are quadratic functions of initial gasoline vapor concentration, which are useful for predicting the explosion pressures of gasoline-air mixtures at various conditions when direct measurements are difficult to achieve.

57 citations

Journal ArticleDOI
TL;DR: In this paper, the pre-explosive column of the Soufriere Hills volcano on Montserrat Island was modeled as a column with a depth-referenced density profile of the column for four mechanisms of pressure buildup.

57 citations


Network Information
Related Topics (5)
Combustion
172.3K papers, 1.9M citations
76% related
Methane
47.7K papers, 1.1M citations
75% related
Turbulence
112.1K papers, 2.7M citations
74% related
Laminar flow
56K papers, 1.2M citations
73% related
Thermal conductivity
72.4K papers, 1.4M citations
72% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023263
2022504
2021174
2020173
2019171
2018174