scispace - formally typeset
Search or ask a question
Topic

Overpressure

About: Overpressure is a research topic. Over the lifetime, 3236 publications have been published within this topic receiving 34648 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors show that the overpressures are caused by oil generation from the source rocks within the Eocene Es3 and Es4 intervals in the Dongying depression, with pressure coefficients up to 1.99 from drillstem tests.
Abstract: The Dongying depression in the Bohai Bay Basin is a young, prolific oil-producing basin in China. The gray to black mudstones, calcareous mudstones, and oil shales of the Eocene Shahejie Formation (Es3 and Es4) are the major source rocks that are primarily dominated by type I kerogens with a high total organic carbon of up to 18.6%. The Es3 interval is characterized by a sedimentation rate of up to 500 m/m.y. Widespread overpressures are present in the Eocene Es3 and Es4 intervals in the depression, with pressure coefficients up to 1.99 from drillstem tests. Among the sonic, resistivity, and density logs, only the sonic-log displays an obvious response to the overpressure from which the top of the overpressure can be clearly identified. Acoustic traveltime versus effective vertical stress analysis of more than 300 wells in the Dongying depression suggests that the acoustic traveltime of the normally pressured and overpressured mudstones is reduced with increasing vertical effective stress. Pore pressures are accurately predicted in the Dongying depression using an Eaton (1972) exponent of 2.0 by comparing the predicted pressure coefficients with measured pressure coefficients. Disequilibrium compaction has been previously proposed as the sole cause of the high-magnitude overpressures in the Eocene strata of the Dongying depression because of rapid deposition of fine-grained sediments. However, our data indicate that the overpressures are caused by oil generation from the source rocks within the Es3 and Es4 intervals. The overpressured sediments display a normal compaction as evidenced from the overpressured mudstones exhibiting no anomalously low density, the apparent lack of correlation between mudstone densities and effective vertical stress, and the overpressured reservoir sandstones showing no anomalous high-matrix porosities or anomalous geothermal gradient. The depths to the top of the overpressure intervals range from 2000 to 3000 m (6562–9843 ft) following closely source rock depths. All the overpressured reservoirs and source rocks have a minimum temperature of approximately 87C, and overpressured source rocks generally have vitrinite reflectance (Ro) values of 0.6% or higher. Overpressures are not found in the strata within which the Ro values are less than 0.5%. The overpressured reservoirs in the Es3 and Es4 intervals are predominantly oil saturated or oil bearing. Organic-rich source rocks with overpressures are capable of generating hydrocarbons and thus can maintain an abnormally high pressure. The calcite precipitation in the calcareous mudstones may have caused a significant reduction in porosity and permeability to form an effective pressure seal. The presence of widespread microfractures in the source rocks may relate to episodic expulsion of hydrocarbons or overpressure dissipation. Overpressures in the reservoir rocks are generated by the fluid transmission from the overpressured source rocks through active faulting and fracturing.

142 citations

Journal ArticleDOI
01 May 2008-Geology
TL;DR: In this article, a comprehensive database of combined gas permeability and fragmentation experiments was used to deduce a fragmentation criterion that incorporates gas permeabilities as well as porosity and internal overpressure, which implies that the energy required for fragmentation is less dependent on the actual pore geometry than on the way the void space is interconnected and thus on the contribution of permeable gas flow to decompression.
Abstract: Fragmentation of porous magma that is subject to gas overpressure is considered to be a crucial process in the generation of explosive volcanic eruptions. A decompressive event (e.g., rapid magma ascent, landslide, dome collapse) disrupts the stress equilibrium between the gas phase and the surrounding melt. When the gas in the pores is exposed to a pressure gradient, it may either fragment the surrounding magma or escape from the magma along an existing pathway of cracks and interconnected bubbles. Therefore, magma permeability can be a decisive parameter in determining if an eruption experiences fragmentation (i.e., whether it is explosive or effusive, or exhibits a temporal transition between the two eruptive styles). Despite the central role that gas permeability may play in the fragmentation of volcanic rocks, previous studies have not experimentally verified or quantified this influence. Based on a comprehensive database of combined permeability and fragmentation experiments, we show that high permeability substantially increases the overpressure required to fragment porous volcanic rocks. Our results allow us to deduce a fragmentation criterion that incorporates gas permeability as well as porosity and internal overpressure. This criterion implies that the energy required for fragmentation is less dependent on the actual pore geometry than on the way the void space is interconnected and, thus, on the contribution of permeable gas flow to decompression.

142 citations

Journal ArticleDOI
TL;DR: The results suggest that a judicious use of overpressure and PRF in lithotripsy could reduce cavitation damage of tissue while maintaining cavitation comminution of stones.
Abstract: Cavitation appears to contribute to tissue injury in lithotripsy. Reports have shown that increasing pulse repetition frequency [(PRF) 0.5–100 Hz] increases tissue damage and increasing static pressure (1–3 bar) reduces cell damage without decreasing stone comminution. Our hypothesis is that overpressure or slow PRF causes unstabilized bubbles produced by one shock pulse to dissolve before they nucleate cavitation by subsequent shock pulses. The effects of PRF and overpressure on bubble dynamics and lifetimes were studied experimentally with passive cavitation detection, high-speed photography, and B-mode ultrasound and theoretically. Overpressure significantly reduced calculated (100–2 s) and measured (55–0.5 s) bubble lifetimes. At 1.5 bar static pressure, a dense bubble cluster was measured with clinically high PRF (2–3 Hz) and a sparse cluster with clinically low PRF (0.5–1 Hz), indicating bubble lifetimes of 0.5–1 s, consistent with calculations. In contrast to cavitation in water, high-speed photography showed that overpressure did not suppress cavitation of bubbles stabilized on a cracked surface. These results suggest that a judicious use of overpressure and PRF in lithotripsy could reduce cavitation damage of tissue while maintaining cavitation comminution of stones.

137 citations

Journal ArticleDOI
TL;DR: In this article, a series of vented explosion tests has been carried out using a 30 m3 explosion chamber and high-speed cine films of the combustion outside the chamber show clearly that an “external explosion” occurs when the gas displaced from the chamber is ignited by the emerging flame, but the extent to which it influences the internal pressure also depends on the relative magnitudes of the internal and external pressures and on the size of the vent.
Abstract: A series of vented explosion tests has been carried out using a 30 m3 explosion chamber. Overpressure measurements made inside and outside the chamber and high-speed cine films of the combustion outside the chamber show clearly that an “external explosion” occurs when the gas displaced from the chamber is ignited by the emerging flame. The overpressure generated by the external explosion increases with the velocity of the emerging jet flame but the extent to which it influences the internal pressure also depends on the relative magnitudes of the internal and external pressures and on the size of the vent. This external explosion phenomenon should be taken into account when interpreting vented explosion data and when developing methods of predicting the pressure developed in a vented explosion.

133 citations


Network Information
Related Topics (5)
Combustion
172.3K papers, 1.9M citations
76% related
Methane
47.7K papers, 1.1M citations
75% related
Turbulence
112.1K papers, 2.7M citations
74% related
Laminar flow
56K papers, 1.2M citations
73% related
Thermal conductivity
72.4K papers, 1.4M citations
72% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023263
2022504
2021174
2020173
2019171
2018174