scispace - formally typeset

Topic

Oxidative coupling of methane

About: Oxidative coupling of methane is a(n) research topic. Over the lifetime, 5089 publication(s) have been published within this topic receiving 142849 citation(s).
Papers
More filters

Journal ArticleDOI
Guoyong Song1, Fen Wang1, Xingwei Li1Institutions (1)
TL;DR: The facile construction of C-E (E = C, N, S, or O) bonds makes Rh(III) catalysis an attractive step-economic approach to value-added molecules from readily available starting materials.
Abstract: Rhodium(III)-catalyzed direct functionalization of C-H bonds under oxidative conditions leading to C-C, C-N, and C-O bond formation is reviewed. Various arene substrates bearing nitrogen and oxygen directing groups are covered in their coupling with unsaturated partners such as alkenes and alkynes. The facile construction of C-E (E = C, N, S, or O) bonds makes Rh(III) catalysis an attractive step-economic approach to value-added molecules from readily available starting materials. Comparisons and contrasts between rhodium(III) and palladium(II)-catalyzed oxidative coupling are made. The remarkable diversity of structures accessible is demonstrated with various recent examples, with a proposed mechanism for each transformation being briefly summarized (critical review, 138 references).

1,819 citations


Journal ArticleDOI
Tetsuya Satoh1, Masahiro Miura1Institutions (1)
TL;DR: Aromatic substrates with oxygen- and nitrogen-containing substituents undergo oxidative coupling with alkynes and alkenes under rhodium catalysis through regioselective C-H bond cleavage, creating fused-ring systems through these reactions.
Abstract: Aromatic substrates with oxygen- and nitrogen-containing substituents undergo oxidative coupling with alkynes and alkenes under rhodium catalysis through regioselective C-H bond cleavage. Coordination of the substituents to the rhodium center is the key to activate the C-H bonds effectively. Various fused-ring systems can be constructed through these reactions.

1,449 citations


Journal ArticleDOI
18 Nov 2011-Angewandte Chemie
TL;DR: This work has reported several recently reported Cu-catalyzed C-H oxidation reactions that feature substrates that are electron-deficient or appear unlikely to undergo single-electron transfer to copper(II), and evidence has been obtained for the involvement of organocopper(III) intermediates in the reaction mechanism.
Abstract: The selective oxidation of C-H bonds and the use of O(2) as a stoichiometric oxidant represent two prominent challenges in organic chemistry. Copper(II) is a versatile oxidant, capable of promoting a wide range of oxidative coupling reactions initiated by single-electron transfer (SET) from electron-rich organic molecules. Many of these reactions can be rendered catalytic in Cu by employing molecular oxygen as a stoichiometric oxidant to regenerate the active copper(II) catalyst. Meanwhile, numerous other recently reported Cu-catalyzed C-H oxidation reactions feature substrates that are electron-deficient or appear unlikely to undergo single-electron transfer to copper(II). In some of these cases, evidence has been obtained for the involvement of organocopper(III) intermediates in the reaction mechanism. Organometallic C-H oxidation reactions of this type represent important new opportunities for the field of Cu-catalyzed aerobic oxidations.

1,056 citations


Journal ArticleDOI
24 Apr 1998-Science
TL;DR: Mechanistic studies show that platinum(II) is the most active oxidation state of platinum for reaction with methane, and are consistent with reaction proceeding through carbon-hydrogen bond activation of methane to generate a platinum-methyl intermediate that is oxidized to generate the methyl ester product.
Abstract: Platinum catalysts are reported for the direct, low-temperature, oxidative conversion of methane to a methanol derivative at greater than 70 percent one-pass yield based on methane. The catalysts are platinum complexes derived from the bidiazine ligand family that are stable, active, and selective for the oxidation of a carbon-hydrogen bond of methane to produce methyl esters. Mechanistic studies show that platinum(II) is the most active oxidation state of platinum for reaction with methane, and are consistent with reaction proceeding through carbon-hydrogen bond activation of methane to generate a platinum-methyl intermediate that is oxidized to generate the methyl ester product.

1,049 citations


Journal ArticleDOI
Jack H. Lunsford1Institutions (1)
25 Dec 2000-Catalysis Today
Abstract: The very large reserves of methane, which often are found in remote regions, could serve as a feedstock for the production of chemicals and as a source of energy well into the 21st century. Although methane currently is being used in such important applications as the heating of homes and the generation of hydrogen for ammonia synthesis, its potential for the production of ethylene or liquid hydrocarbon fuels has not been fully realized. A number of strategies are being explored at levels that range from fundamental science to engineering technology. These include: (a) stream and carbon dioxide reforming or partial oxidation of methane to form carbon monoxide and hydrogen, followed by Fischer–Tropsch chemistry, (b) the direct oxidation of methane to methanol and formaldehyde, (c) oxidative coupling of methane to ethylene, and (d) direct conversion to aromatics and hydrogen in the absence of oxygen. Each alternative has its own set of limitations; however, economical separation is common to all with the most important issues being the separation of oxygen from air and the separation of hydrogen or hydrocarbons from dilute product streams. Extensive utilization of methane for the production of fuels and chemicals appears to be near, but current economic uncertainties limit the amount of research activity and the implementation of emerging technologies.

980 citations


Network Information
Related Topics (5)
Catalysis

400.9K papers, 8.7M citations

96% related
Alkyl

223.5K papers, 2M citations

93% related
Palladium

64.7K papers, 1.3M citations

92% related
Heterogeneous catalysis

22.2K papers, 835.3K citations

92% related
Aryl

95.6K papers, 1.3M citations

92% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20229
2021178
2020133
2019172
2018167
2017192

Top Attributes

Show by:

Topic's top 5 most impactful authors

Kiyoshi Otsuka

31 papers, 1.1K citations

Manfred Baerns

28 papers, 885 citations

Masahiro Miura

23 papers, 3.5K citations

Vasant R. Choudhary

23 papers, 1.1K citations

John B. Moffat

22 papers, 315 citations