scispace - formally typeset
Search or ask a question

Showing papers on "Oxidative stress published in 1992"


Journal ArticleDOI
TL;DR: The nature of antioxidants is discussed, it being suggested that antioxidant enzymes and chelators of transition metal ions may be more generally useful protective agents than chain‐breaking antioxidants.
Abstract: Radicals are species containing one or more unpaired electrons. The oxygen radical superoxide (O 2 - ) and the non-radical oxidants hydrogen peroxide (H2O2) and hypochlorous acid (HOCl) are produced during normal metabolism and perform several useful functions. Excessive production of O 2 - and H2O2 can result in tissue damage, which often involves generation of highly reactive hydroxy 1 radical (· OH) and other oxidants in the presence of “catalytic” iron or copper ions. A major form of antioxidant defence is the storage and transport of iron or copper ions in forms that will not catalyze formation of reactive radicals. Tissue injury, e. g., by ischaemia or trauma, can cause increased iron availability and accelerate free radical reactions. This may be especially important in the brain, since areas of this organ are rich in iron and cerebrospinal fluid cannot bind released iron ions. Oxidative stress upon nervous tissue can produce damage by several interacting mechanisms, including rises in intracellular free Ca2+ and, possibly, release of excitatory amino acids. Recent suggestions that free radical reactions are involved in the neurotoxicity of aluminium and in damage to the substantia nigra in Parkinson’s disease are reviewed. Finally, the nature of antioxidants is discussed, with a suggestion that antioxidant enzymes and chelators of iron ions may be more generally useful protective agents than chain-breaking antioxidants. Careful precautions must be taken in the design of antioxidants for therapeutic use.

2,968 citations


Journal ArticleDOI
15 Oct 1992-Nature
TL;DR: The isolation and characterization of a novel complementary DNA corresponding to a messenger RNA that is highly inducible by oxidative stress and heat shock in human skin cells is reported, suggesting that this gene may play an important regulatory role in the human cellular response to environmental stress.
Abstract: REACTIVE oxygen species have been implicated both in the ageing process and in degenerative diseases, including arthritis and cancer1,2. Bacteria adapt to the lethal effects of oxidants such as hydrogen peroxide by inducing the expression of protective stress genes3,4. Analogous responses have been identified in human cells. For example, haem oxygenase is a major stress protein in human cells treated with oxidants5, and reactive oxygen intermediates activate NF-κB, a transcriptional regulator of genes involved in inflammatory and acute-phase responses6. We report here the isolation and characterization of a novel complementary DNA (CL100) corresponding to a messenger RNA that is highly inducible by oxidative stress and heat shock in human skin cells. The cDNA contains an open reading frame specifying a protein of Mr 39.3K with the structural features of a non-receptor-type proteintyrosine phosphatase7 and which has significant amino-acid sequence similarity to a Tyr/Ser-protein phosphatase encoded by the late gene H1 of vaccinia virus8. The purified protein encoded by the CL100 open reading frame expressed in bacteria has intrinsic phosphatase activity. Given the relationship between the levels of protein-tyrosine phosphorylation, receptor activity, cellular proliferation and cell-cycle control, the induction of this gene may play an important regulatory role in the human cellular response to environmental stress.

660 citations


Journal ArticleDOI
TL;DR: Many data support the involvement of free radical mechanisms and suggest that dietary and/or pharmacological agents able to prevent an ethanol-induced oxidative stress may reduce the incidence of ethanol toxicity in humans.

612 citations


Journal ArticleDOI
TL;DR: The finding that oxidized glutathione is not decreased in Parkinson's disease suggests that the decrease in reduced glutathion is not exclusively the consequence of neuronal loss in the substantia nigra but may indicate a state of oxidative stress.

583 citations


Journal ArticleDOI
TL;DR: Results show that oxidative damage to brain during aging is decreased by chronic administration of PBN, which may be related to its trapping of specific free radicals, which triggers a cascade of oxidative events that eventually lead to tissue injury.
Abstract: Iron mediates damage to proteins and DNA. The mechanisms of damage not only involve iron but also oxygen free radical intermediates. Oxidative damage to DNA causes not only strand breaks, but also formation of specific base adducts, such as 8-hydroxy-2'-deoxyguanosine. Oxidative damage also inactivates certain enzymes such as glutamine synthetase. Novel methods of assessing oxidative damage to tissue, including quantitation of salicylate hydroxylation as an index of hydroxyl free radical flux as well as specific lesions to proteins and DNA, have yielded results that clearly show that ischemia/reperfusion injury to mongolian gerbil brain involves oxidatively damaging events. Aging in gerbil as well as human brain is also associated with increased oxidative damage. Recent novel observations have shown that the spin-trapping agent phenyl alpha-tert-butylnitrone (PBN) offers protection in gerbil brain during ischemia/reperfusion injury. We also show that oxidative damage to brain during aging is decreased by chronic administration of PBN. The mechanism of action of PBN may be related to its trapping of specific free radicals, which triggers a cascade of oxidative events that eventually lead to tissue injury.

537 citations


Journal ArticleDOI
TL;DR: The data presented suggest there is oxidative stress in the substantia nigra at the time of death in advanced Parkinson's disease that manifests in terms of increased lipid peroxidation, superoxide dismutase activity, and zinc levels, and that alterations in reduced glutathione levels may occur very early in the illness.
Abstract: We examine the evidence for free radical involvement and oxidative stress in the pathological process underlying Parkinson's disease, from postmortem brain tissue. The concept of free radical involvement is supported by enhanced basal lipid peroxidation in substantia nigra in patients with Parkinson's disease, demonstrated by increased levels of malondialdehyde and lipid hydroperoxides. The activity of many of the protective mechanisms against oxidative stress does not seem to be significantly altered in the nigra in Parkinson's disease. Thus, activities of catalase and glutathione peroxidase are more or less unchanged, as are concentrations of vitamin C and vitamin E. The activity of mitochondrial superoxide dismutase and the levels of the antioxidant ion zinc are, however, increased, which may reflect oxidative stress in substantia nigra. Levels of reduced glutathione are decreased in nigra in Parkinson's disease; this decrease does not occur in other brain areas or in other neurodegenerative illnesses affecting this brain region (i.e., multiple system atrophy, progressive supranuclear palsy). Altered glutathione metabolism may prevent inactivation of hydrogen peroxide and enhance formation of toxic hydroxyl radicals. In brain material from patients with incidental Lewy body disease (presymptomatic Parkinson's disease), there is no evidence for alterations in iron metabolism and no significant change in mitochondrial complex I function. The levels of reduced glutathione in substantia nigra, however, are reduced to the same extent as in advanced Parkinson's disease. These data suggest that changes in glutathione function are an early component of the pathological process of Parkinson's disease.(ABSTRACT TRUNCATED AT 250 WORDS)

491 citations


Journal ArticleDOI
TL;DR: It is concluded that copper tolerance in S. cucubalus does not depend on the production of phytochelatins but is related to the plant's ability to prevent glutathione depletion resulting from copper-induced phytOChelatin production, e.g. by restricting its copper uptake.
Abstract: The relation between loss of glutathione due to metal-induced phytochelatin synthesis and oxidative stress was studied in the roots of copper-sensitive and tolerant Silene cucubalus (L.) Wib., resistant to 1 and 40 micromolar Cu, respectively. The amount of nonprotein sulfhydryl compounds other than glutathione was taken as a measure of phytochelatins. At a supply of 20 micromolar Cu, which is toxic for sensitive plants only, phytochelatin synthesis and loss of total glutathione were observed only in sensitive plants within 6 h of exposure. When the plants were exposed to a range of copper concentrations for 3 d, a marked production of phytochelatins in sensitive plants was already observed at 0.5 micromolar Cu, whereas the production in tolerant plants was negligible at 40 micromolar or lower. The highest production in tolerant plants was only 40% of that in sensitive plants. In both varieties, the synthesis of phytochelatins was coupled to a loss of glutathione. Copper at toxic concentrations caused oxidative stress, as was evidenced by both the accumulation of lipid peroxidation products and a shift in the glutathione redox couple to a more oxidized state. Depletion of glutathione by pretreatment with buthionine sulfoximine significantly increased the oxidative damage by copper. At a comparably low glutathione level, cadmium had no effect on either lipid peroxidation or the glutathione redox couple in buthionine sulfoximine-treated plants. These results indicate that copper may specifically cause oxidative stress by depletion of the antioxidant glutathione due to phytochelatin synthesis. We conclude that copper tolerance in S. cucubalus does not depend on the production of phytochelatins but is related to the plant9s ability to prevent glutathione depletion resulting from copper-induced phytochelatin production, e.g. by restricting its copper uptake.

480 citations


Journal ArticleDOI
TL;DR: It is suggested that the interaction of MPP+ with complex I induces free radical generation, which in turn leads to the irreversible inhibition of complex I activity, which has important implications for the interpretation of the increased oxidative stress observed in Parkinson's disease substantia nigra.
Abstract: Incubation of 10 mM 1-methyl-4-phenylpyridinium (MPP+) with sonicated beef heart mitochondria caused an irreversible time-dependent decrease in NADH-ubiquinone-1 (CoQ1) reductase activity (52% inhibition after 1 h). Inclusion of glutathione, ascorbate, or catalase in the incubation mixture protected the NADH-CoQ1 reductase activity. These results suggest that the interaction of MPP+ with complex I induces free radical generation, which in turn leads to the irreversible inhibition of complex I activity. The generation of free radicals by neurotoxin-induced inhibition of complex I has important implications for our interpretation of the increased oxidative stress observed in Parkinson's disease substantia nigra and for our understanding of the cause(s) of dopaminergic cell death in this disorder.

389 citations


Journal Article
TL;DR: The hypothesis that oxidative stress may be involved in the pathogenesis of Alzheimer's disease is supported.
Abstract: Membrane and cytoskeletal structures are known targets of oxidative injury. Brains from patients with Alzheimer's disease have cytoskeletal abnormalities and platelet and possible neuronal membrane lesions. The authors have recently demonstrated that superoxide anion is a powerful inducer of heat-shock protein synthesis, and have also shown that in response to oxidative stress or hyperthermia, intracellular levels of antioxidant enzymes increase to several folds. Whether the aforementioned mechanisms play a role in Alzheimer's disease has been suggested but is not totally established. While exploring this possibility, tissue sections from five brains with Alzheimer's disease and five neuropathologically normal age-matched controls were immunostained with polyclonal antibodies against superoxide dismutase (CuZn- and Mn- forms) and catalase. A standard avidin-biotin-peroxidase method was used for antigen detection. A subgroup of neurofibrillary tangles (15-25%) and senile plaques (50%) showed immunoreactivity for both enzymes with a staining pattern similar (but not identical) to that usually observed with antibodies against ubiquitin. Senile plaques displayed a granular pattern of immunostaining. Amyloid cores in mature classical plaques remained unstained. In addition, occasional elements with features consistent with reactive glial cells were strongly immunostained. Tangle-free neurons in both diseased and control brains showed weak to absent intracytoplasmic immunoreactivity. The immunoreactivity was totally abolished by preincubation of the primary antibodies with the corresponding purified antigens. These findings support the hypothesis that oxidative stress may be involved in the pathogenesis of Alzheimer's disease.

359 citations


Journal ArticleDOI
TL;DR: Diverse cellular implications of oxyradical metabolism inperoxisomes are discussed in relation to phenomena such as cell injury, peroxisomal genetic diseases, per oxisome proliferation and oxidative stress, metal and salt stress, catabolism of nucleic acids, senescence, and plant pathogenic processes.

321 citations


Journal ArticleDOI
TL;DR: It is proposed that PROS generated in the brain after CO hypoxia originate primarily from mitochondria, and may contribute to CO-mediated neuronal damage during reoxygenation after severe CO intoxication.
Abstract: To better understand the mechanisms of tissue injury during and after carbon monoxide (CO) hypoxia, we studied the generation of partially reduced oxygen species (PROS) in the brains of rats subjected to 1% CO for 30 min, and then reoxygenated on air for 0-180 min. By determining H2O2-dependent inactivation of catalase in the presence of 3-amino-1,2,4-triazole (ATZ), we found increased H2O2 production in the forebrain after reoxygenation. The localization of catalase to brain microperoxisomes indicated an intracellular site of H2O2 production; subsequent studies of forebrain mitochondria isolated during and after CO hypoxia implicated nearby mitochondria as the source of H2O2. In the mitochondria, two periods of PROS production were indicated by decreases in the ratio of reduced to oxidized glutathione (GSH/GSSG). These periods of oxidative stress occurred immediately after CO exposure and 120 min after reoxygenation, as indicated by 50 and 43% decreases in GSH/GSSG, respectively. The glutathione depletion data were supported by studies of hydroxyl radical generation using a salicylate probe. The salicylate hydroxylation products, 2,3 and 2,5-dihydroxybenzoic acid (DHBA), were detected in mitochondria from CO exposed rats in significantly increased amounts during the same time intervals as decreases in GSH/GSSG. The DHBA products were increased 3.4-fold immediately after CO exposure, and threefold after 120 min reoxygenation. Because these indications of oxidative stress were not prominent in the postmitochondrial fraction, we propose that PROS generated in the brain after CO hypoxia originate primarily from mitochondria. These PROS may contribute to CO-mediated neuronal damage during reoxygenation after severe CO intoxication.

Journal ArticleDOI
TL;DR: This article reviews the pathophysiologic concept that superoxide and hydrogen peroxide, generated by activated leukocytes, together with low-molecular-weight chelate iron derived from fecal sources and from denatured hemoglobin, amplify the inflammatory response and subsequent mucosal damage in patients with active episodes of ulcerative colitis.

Journal ArticleDOI
TL;DR: Protein restriction reduced the accumulation of oxidatively damaged proteins during the oxidative stress of chronic irradiation, and oxidative damage to proteins increased with aging and with radiation.
Abstract: The accumulation of unrepaired oxidative damage products may be a major factor in cellular aging. Both oxidative lesions in DNA and oxidatively damaged proteins have been shown to accumulate during aging. The accumulation of oxidized proteins in Fischer 344 rats was compared for animals consuming protein-restricted and calorically restricted diets--both of which have been shown to extend lifespan. Rats were fed diets restricted in either protein (5% or 10% of the diet as compared with the normal 20% casein), or calories (25% or 40% less than normal), or total diet (40% less than normal). In addition, some of the rats fed a diet providing 5% or 20% protein were irradiated twice weekly (125 rads per exposure; 1 rad = 0.01 Gy). The level of oxidative damage to proteins (protein carbonyls) was determined in rats sacrificed at various times. The oxidative damage to proteins increased with aging and with radiation. Either protein or calorie restriction markedly inhibited the accumulation of oxidatively damaged proteins. Protein restriction reduced the accumulation of oxidatively damaged proteins during the oxidative stress of chronic irradiation.

Journal Article
TL;DR: It appears that a basal redox equilibrium tending toward oxidation is a prerequisite for full activation of transduction pathways regulating the activity of NF-kappa B-dependent genes.
Abstract: We have tested the hypothesis that cellular activation events occurring in T lymphocytes and monocytes and mediated through translocation of the transcription factor NF-kappa B are dependent upon the constitutive redox status of these cells. We used phenolic, lipid-soluble, chain-breaking antioxidants (butylated hydroxyanisole (BHA), nordihydroquairetic acid, or alpha-tocopherol (vitamin E) to show that peroxyl radical scavenging in unstimulated and PMA- or TNF-stimulated cells blocks the functions depending on NF-kappa B activation. BHA was found to suppress not only PMA- or TNF-induced, but also constitutive, HIV-enhancer activity concomitant to an inhibition of NF-kappa B binding activity in both lymphoblastoid T (J.Jhan) and monocytic (U937) cell lines. This was also true for KBF (p50 homodimer) binding activity in U937 cells. Secretion of TNF, the product of another NF-kappa B-dependent gene, was abolished by BHA in PMA-stimulated U937 cells. The anti-oxidative effect of BHA was accompanied by an increase in thiol, but not glutathione, content in stimulated and unstimulated T cell, whereas TNF stimulation itself barely modified the cellular thiol level. Oxidative stress obtained by the addition of H2O2 to the culture medium of J.Jhan or U937 cells could not by itself induce NF-kappa B activation. These observations suggest that TNF and PMA do not lead to NF-kappa B activation through induction of changes in the cell redox status. Rather, TNF and PMA can exert their effect only if cells are in an appropriate redox status, because prior modification toward reduction with BHA treatment prevents this activation. It appears that a basal redox equilibrium tending toward oxidation is a prerequisite for full activation of transduction pathways regulating the activity of NF-kappa B-dependent genes.

Journal ArticleDOI
TL;DR: Low levels of oxidative stress can lead to activation of enzymes involved in cell signaling, in particular, the activity of protein kinase C is markedly increased by oxidation‐reduction–cycling quinones through a thiol/disulfide exchange mechanism, which may represent a mechanism by which prooxidants can modulate cell growth and differentiation.
Abstract: Exposure of mammalian cells to oxidative stress induced by oxidation-reduction-active quinones and other prooxidants results in depletion of intracellular glutathione, followed by modification of protein thiols and loss of cell viability. Protein thiol modification during oxidative stress is normally associated with impairment of various cell functions, including inhibition of agonist-stimulated phosphoinositide metabolism, disruption of intracellular Ca2+ homeostasis, and perturbation of normal cytoskeletal organization. The latter effect appears to be responsible for formation of the numerous plasma membrane blebs typically seen in cells exposed to cytotoxic concentrations of prooxidants. Following disruption of thiol homeostasis in prooxidant-treated cells, there is impairment of Ca2+ transport and subsequent perturbation of intracellular Ca2+ homeostasis, resulting in a sustained increase in cytosolic Ca2+ concentration. This increase in Ca2+ can cause activation of various Ca(2+)-dependent degradative enzymes (e.g., phospholipases, proteases, endonucleases), which may contribute to cell death. In contrast to the cytotoxic effects of excessive oxidative damage, low levels of oxidative stress can lead to activation of enzymes involved in cell signaling. In particular, the activity of protein kinase C is markedly increased by oxidation-reduction-cycling quinones through a thiol/disulfide exchange mechanism, which may represent a mechanism by which prooxidants can modulate cell growth and differentiation.

Journal ArticleDOI
TL;DR: It is concluded that exhaustive exercise can impose a severe oxidative stress on skeletal muscle and that glutathione systems as well as antioxidant enzymes are important in coping with free radical-mediated muscle injury.
Abstract: Glutathione (gamma-glutamylcysteinylglycine) is one of the major antioxidants in the body. The present study investigated the changes of glutathione status, oxidative injury, and antioxidant enzyme systems after an exhaustive bout of treadmill running and/or hydroperoxide injection in male Sprague-Dawley rats. Concentrations of total and reduced glutathione in deep vastus lateralis muscle were significantly increased (P less than 0.01) after exhaustive exercise with either hydroperoxide (t-butyl hydroperoxide) or saline injection, whereas hydroperoxide alone had no significant effect. Exhaustive exercise increased muscle glutathione disulfide content by 75 and 60% (P less than 0.05), respectively, in hydroperoxide and saline groups. Concentrations of glutathione-related amino acids glutamate, cysteine, and aspartate were significantly increased in the same muscle after exhaustion. Hepatic glutathione status was not affected by either hydroperoxide injection or exercise. Glutathione peroxidase, glutathione reductase, superoxide dismutase, and catalase activities were significantly elevated after exhaustive exercise with or without hydroperoxide injection in muscle but not in liver. Hydroperoxide and exhaustive exercise enhanced lipid peroxidation in muscle and liver, respectively. It is concluded that exhaustive exercise can impose a severe oxidative stress on skeletal muscle and that glutathione systems as well as antioxidant enzymes are important in coping with free radical-mediated muscle injury.

Journal ArticleDOI
TL;DR: The potential of various stages of ethanol catabolism to involve generation of free radicals is described, and the enzymic steps that have the capacity to generate reactive oxygen species are outlined.

Journal ArticleDOI
TL;DR: It is suggested that increased oxidative endothelial cell injury may contribute to vascular injury during Mg deficiency and be associated with intracellular lipid peroxidation.


Journal Article
TL;DR: The importance of genetic aspects, ageing, environmental factors, head trauma, defective mitochondrial respiration, altered iron metabolism, oxidative stress and glutamatergic overactivity of the basal ganglia in the pathogenesis of Parkinson's disease are considered in this review.
Abstract: The importance of genetic aspects, ageing, environmental factors, head trauma, defective mitochondrial respiration, altered iron metabolism, oxidative stress and glutamatergic overactivity of the basal ganglia in the pathogenesis of Parkinson's disease (PD) are considered in this review.

Journal ArticleDOI
TL;DR: It is argued that normobaric hyperoxia is a particularly relevant oxidative stress model for in vitro cellular aging studies because of its prominent effects as observed in cultures of Chinese hamster cell lines.
Abstract: According to the free radical theory of aging, loss of cellular function during aging is a consequence of accumulating subcellular damage inflicted by activated oxygen species. In cells, the deleterious effects of activated oxygen species may become manifest when the balance between radical formation and destruction (removal) is disturbed creating a situation denoted as 'oxidative stress'. Cell culture systems are especially useful to study the effects of oxidative stress, in terms of both toxicity and cellular adaptive responses. A better understanding of such processes may be pertinent to fully comprehend the cellular aging process. This article reviews three model systems for oxidative stress: extracellular sources of O2-. and H2O2, and normobaric hyperoxia (elevated ambient oxygen). Methodological and practical aspects of these exposure models are discussed, as well as their prominent effects as observed in cultures of Chinese hamster cell lines. Since chronic exposure models are to be preferred, it is argued that normobaric hyperoxia is a particularly relevant oxidative stress model for in vitro cellular aging studies.

Journal ArticleDOI
TL;DR: In conclusion, butylated hydroxytoluene (BHT) completely prevented oxidation of endogenous PUFAs but did not completely prevent hemolysis, indicating that factors other than lipid peroxidation are also important in causing lysis of RBCs.

Journal ArticleDOI
TL;DR: Results show that oxidative stress provokes sequential expression of c‐fos, c‐jun, and c‐myc, mRNA in this order, which appears to be largely controlled by calcium ion movement, which could include protein kinase C activation.
Abstract: Oxidative stress plays an important role in various types of cell injury and tumor promotion. Cells respond to oxidative stress in many ways including changes in membrane organization, ion movements, and altered gene expression, all of which contribute to the subsequent fate of affected cells. In this study, we investigated the expression of the proto-oncogenes c-fos, c-myc, and c-jun, which play a key role in proliferation and differentiation, using primary cultures of rat proximal tubular epithelium exposed to oxidative stress generated by the xanthine/xanthine oxidase system. This system generates superoxide and H2O2 in the extracellular space stimulating the release of active oxygen species from inflammatory cells. c-fos mRNA was expressed within 15 min, peaked at 30 min, and returned to constitutive levels by 3 h. c-jun mRNA began to rise after 30 min, peaked at 120 min, and remained above the constitutive levels up to 180 min. c-myc mRNA expression was less affected by the treatment, with levels increasing gradually over the 180 min period. The expression of c-fos was inhibited by superoxide dismutase but not by catalase and was super-induced by cycloheximide. H2O2 alone did not induce any c-fos mRNA in this system. Chelation of extracellular ionized calcium by EGTA or of intracellular ionized calcium by Quin 2/AM resulted in a marked decrease of c-fos expression. Two protein kinase C inhibitors, H-7 and staurosporine, partly diminished the expression of c-fos, whereas a third, 2-aminopurine, which has a broader spectrum of inhibiting protein kinases, almost completely abolished it. A poly ADP-ribosylation inhibitor, 3-aminobenzamide, had no effect on c-fos expression in this system. Our results show that oxidative stress provokes sequential expression of c-fos, c-jun, and c-myc, mRNA in this order. This c-fos expression appears to be largely controlled by calcium ion movement, which could include protein kinase C activation. Another protein kinase or kinases also appear to play an important role.

Journal ArticleDOI
TL;DR: Oxidative stress may also play an important role in the genesis of cellular DNA damage and, in this context, may be related to HIV‐associated malignancies and disease progression.
Abstract: This review describes the potential role of oxidative stress as a cofactor of disease progression from asymptomatic human immunodeficiency virus (HIV) infection to the acquired immunodeficiency syndrome (AIDS). Oxidative stress is a known activator of HIV replication in vitro through the activation of a factor that binds to a DNA-binding protein, NF-kappa B, which in turn stimulates HIV gene expression by acting on the promoter region of the viral long terminal repeat. Tumor necrosis factor alpha (TNF-alpha), an essential cytokine produced by activated macrophages, is also involved in the activation of HIV infection through similar mechanisms. TNF-mediated cytotoxicity of cells exposed to this substance is related to the generation of intracellular hydroxyl radicals. An indirect argument in favor of the role of oxidative stress in HIV-associated disease progression is the consumption of glutathione (GSH), a major intracellular antioxidant, during HIV infection and progression. GSH is known to play a major role in regulation of T cell immune functions. Oxidative stress may also play an important role in the genesis of cellular DNA damage and, in this context, may be related to HIV-associated malignancies and disease progression. Finally, the role of antioxidants as components of therapeutic strategies to combat HIV disease progression is discussed.

Journal ArticleDOI
TL;DR: It is shown directly that N-acetylcysteine (NAC) blocks HIV expression in chronic and acute infection models, and HIV replication in normal peripheral blood mononuclear cells, and the results provide a rationale for clinical trials testing the efficacy of GSH-replenishing drugs such as NAC in the treatment of AIDS.
Abstract: Several investigators have implicated depletion of glutathione (GSH) and production of reactive oxygen intermediates (ROIs) in the regulation of the human immunodeficiency virus (HIV). We have shown directly that N-acetylcysteine (NAC) blocks HIV expression in chronic and acute infection models, and HIV replication in normal peripheral blood mononuclear cells. NAC is a cysteine prodrug which maintains intracellular thiol levels during oxidative stress and replenishes depleted GSH. The observed antiviral effect of NAC is due to inhibition of viral stimulation by ROIs, which are produced in response to inflammatory cytokines. We have also shown that HIV-infected individuals have decreased intracellular GSH levels in their circulating T cells. Since GSH is the major protection against the production of ROIs, we hypothesize that the observed decrease is due to a chronic oxidative stress induced by continual exposure to elevated levels of inflammatory cytokines. Together, these results provide a rationale for ...

Book
01 Jan 1992
TL;DR: Cell's enzymatic and nonenzymatic defenses against oxidative stress caused by active oxygen species and free radicals are examined.
Abstract: Examines cell's enzymatic and nonenzymatic defenses against oxidative stress caused by active oxygen species and free radicals. Also reviews the regulation and expression of genes for antioxidant enzymes, and the attempts to engineer organisms for increased tolerance to oxidative stress. Acidic pape

Journal ArticleDOI
TL;DR: Reactive oxygen metabolites affect binding of ligands to membrane receptors and also coupling of receptors to G-proteins and effector enzymes, thus affecting another pharmacological messenger system.

Journal ArticleDOI
TL;DR: The results suggest that hepatic alterations may be caused indirectly by mechanisms related to the host response to virus infection, and a general decrease in the antioxidant buffering capacity may reduce the ability of tissues to protect against potential oxidative stress.
Abstract: We investigated the possible involvement of oxidative mechanisms in the pathogenesis of influenza A/PR8/34 virus infection in mice. As a biochemical marker of oxidative stress, we determined the endogenous concentrations of the antioxidants glutathione and vitamins C and E in their reduced and oxidized forms in the lungs, liver and blood plasma of control and infected animals. Following intranasal infection with 8 to 10 LD50, influenza virus was detected in the lungs, but not in the plasma, liver or other organs. Infection resulted in a decrease in the total concentration of glutathione and vitamins C and E, whereas no relevant change in the ratio of oxidized to total concentration of antioxidants was observed. Changes in the concentration of hepatic antioxidants were significant in the early stages of the infection. The results suggest that hepatic alterations may be caused indirectly by mechanisms related to the host response to virus infection. The observed general decrease in the antioxidant buffering capacity may reduce the ability of tissues to protect against potential oxidative stress. Such stress can occur during bacterial superinfections, which are common in influenza, thereby rendering the host more susceptible to the pathogenic effects of such agents. In addition, reactive oxygen species produced in the lung may inactivate protease inhibitors, resulting in increased protease activity. Using an in vitro system consisting of alpha 1-antiprotease, trypsin and HOCl as the oxidant, we have shown that the infectivity of influenza viruses can be increased up to 10,000-fold by proteolytic cleavage of haemagglutinin, leading to activation of the fusogenic properties of this protein.

Journal ArticleDOI
TL;DR: Enhanced levels of catalase did not prolong the life span of flies, nor did they provide improved protection against oxidative stress induced by hyperoxia or paraquat treatment, however, enhanced resistance to hydrogen peroxide was observed in the overexpressors.

Journal ArticleDOI
TL;DR: Findings indicate that high concentrations of TNF alpha induce an oxidant stress in isolated hepatocytes, and the antioxidants mannitol and benzoate, as well as the iron chelator deferoxamine, reduced the extent of T NF alpha-induced oxidant effects in hepatocyte, which indicates that the oxidant Stress may involve hydroxyl radical generation.