scispace - formally typeset
Search or ask a question

Showing papers on "Oxidative stress published in 1998"


Journal ArticleDOI
TL;DR: Assessment of oxidativedamage to biomolecules by means of emerging technologies based on products of oxidative damage to DNA, lipids, and proteins would not only advance the understanding of the underlying mechanisms but also facilitate supplementation and intervention studies designed and conducted to test antioxidant efficacy in human health and disease.
Abstract: Free radicals and other reactive oxygen species (ROS) are constantly formed in the human body. Free-radical mechanisms have been implicated in the pathology of several human diseases, including cancer, atherosclerosis, malaria, and rheumatoid arthritis and neurodegenerative diseases. For example, the superoxide radical (O2·−) and hydrogen peroxide (H2O2) are known to be generated in the brain and nervous system in vivo, and several areas of the human brain are rich in iron, which appears to be easily mobilizable in a form that can stimulate free-radical reactions. Antioxidant defenses to remove O2·− and H2O2 exist. Superoxide dismutases (SOD) remove O2·− by greatly accelerating its conversion to H2O2. Catalases in peroxisomes convert H2O2 into water and O2 and help to dispose of H2O2 generated by the action of the oxidase enzymes that are located in these organelles. Other important H2O2-removing enzymes in human cells are the glutathione peroxidases. When produced in excess, ROS can cause tissue injury. However, tissue injury can itself cause ROS generation (e.g., by causing activation of phagocytes or releasing transition metal ions from damaged cells), which may (or may not, depending on the situation) contribute to a worsening of the injury. Assessment of oxidative damage to biomolecules by means of emerging technologies based on products of oxidative damage to DNA (e.g., 8-hydroxydeoxyguanosine), lipids (e.g., isoprostanes), and proteins (altered amino acids) would not only advance our understanding of the underlying mechanisms but also facilitate supplementation and intervention studies designed and conducted to test antioxidant efficacy in human health and disease.

1,557 citations


Journal ArticleDOI
TL;DR: An aspect of related interest that is under intensive investigation is lipid peroxidation/LOOH-mediated stress signaling, which may evoke a variety of cellular responses, ranging from induction of antioxidant enzymes to apoptotic death.

1,167 citations


Journal ArticleDOI
TL;DR: Critical issues regarding this biological process, namely the biochemical pathways for nitration of tyrosine residues in vivo, potential protein targets, and pathophysiological consequences of protein tyrosines nitration are addressed.

1,015 citations


Journal ArticleDOI
TL;DR: Melatonin has been shown prophylactically to reduce amyloid beta protein toxicity of Alzheimer's disease, to reduce oxidative damage in several models of Parkinson's disease and to protect against glutamate excitotoxicity.

880 citations


Journal ArticleDOI
TL;DR: The data suggest that mitochondrial superoxide accumulation and consequent peroxynitrite production and mitochondrial dysfunction play pivotal roles in neuronal apoptosis induced by diverse insults in cell culture and in vivo.
Abstract: Oxidative stress is implicated in neuronal apoptosis that occurs in physiological settings and in neurodegenerative disorders. Superoxide anion radical, produced during mitochondrial respiration, is involved in the generation of several potentially damaging reactive oxygen species including peroxynitrite. To examine directly the role of superoxide and peroxynitrite in neuronal apoptosis, we generated neural cell lines and transgenic mice that overexpress human mitochondrial manganese superoxide dismutase (MnSOD). In cultured pheochromocytoma PC6 cells, overexpression of mitochondria-localized MnSOD prevented apoptosis induced by Fe 2+ , amyloid β-peptide (Aβ), and nitric oxide-generating agents. Accumulations of peroxynitrite, nitrated proteins, and the membrane lipid peroxidation product 4-hydroxynonenal (HNE) after exposure to the apoptotic insults were markedly attenuated in cells expressing MnSOD. Glutathione peroxidase activity levels were increased in cells overexpressing MnSOD, suggesting a compensatory response to increased H 2 O 2 levels. The peroxynitrite scavenger uric acid and the antioxidants propyl gallate and glutathione prevented apoptosis induced by each apoptotic insult, suggesting central roles for peroxynitrite and membrane lipid peroxidation in oxidative stress-induced apoptosis. Apoptotic insults decreased mitochondrial transmembrane potential and energy charge in control cells but not in cells overexpressing MnSOD, and cyclosporin A and caspase inhibitors protected cells against apoptosis, demonstrating roles for mitochondrial alterations and caspase activation in the apoptotic process. Membrane lipid peroxidation, protein nitration, and neuronal death after focal cerebral ischemia were significantly reduced in transgenic mice overexpressing human MnSOD. The data suggest that mitochondrial superoxide accumulation and consequent peroxynitrite production and mitochondrial dysfunction play pivotal roles in neuronal apoptosis induced by diverse insults in cell culture and in vivo .

872 citations


Journal ArticleDOI
TL;DR: It is established that oxidatively damaged protein is associated with aging and some diseases and nitration of tyrosine residues may contribute to peroxynitrite toxicity, as nitration precludes the phosphorylation or nucleotidylation of tyosine residues and thereby seriously compromises one of the most important mechanisms of cellular regulation and signal transduction.
Abstract: Highly reactive oxygen species that are formed during normal metabolism and under conditions of oxidative stress are able to oxidize proteins or convert lipid and carbohydrate derivatives to compounds that react with functional groups on proteins. Among other changes, these ROS-mediated reactions lead to the formation of protein carbonyl derivatives, which serves as a marker of ROS-mediated protein damage. On the basis of this marker, it is established that oxidatively damaged protein is associated with aging and some diseases. The accumulation of oxidatively damaged protein reflects the balance among a myriad of factors that govern the rates of ROS generation and the rate at which damaged protein is degraded. Peroxynitrite, which is formed under normal physiological conditions, is able to oxidize methionine residues in proteins and to nitrate tyrosine residues; however, its ability to do so is dependent on the availability of CO2, which stimulates the nitration of tyrosine residues but inhibits the oxidation of methionine residues. Nitration of tyrosine residues may contribute to peroxynitrite toxicity, as nitration precludes the phosphorylation or nucleotidylation of tyrosine residues and thereby seriously compromises one of the most important mechanisms of cellular regulation and signal transduction.

863 citations


Journal Article
TL;DR: It is demonstrated that AOPP act as a mediator of oxidative stress and monocyte respiratory burst, which points to monocytes as both target and actor in the immune dysregulation associated with chronic uremia.
Abstract: We previously demonstrated the presence of advanced oxidation protein products (AOPP), a novel marker of oxidative stress in the plasma of uremic patients receiving maintenance dialysis. The present study in a cohort of 162 uremic patients showed that plasma concentrations of AOPP increased with progression of chronic renal failure and were closely related to advanced glycation end products (AGE)-pentosidine (r = 0.52, p < 0.001), taken as a marker of AGE. In vivo, the relevance of AOPP and AGE-pentosidine in monocyte-mediated inflammatory syndrome associated with uremia was evidenced by close correlations between AOPP or AGE-pentosidine and monocyte activation markers, including neopterin, IL-1R antagonist, TNF-alpha, and TNF soluble receptors (TNF-sR55 and TNF-sR75). To determine the mechanisms by which AOPP and AGE could be directly involved in monocyte activation, AOPP-human serum albumin (HSA) and AGE-HSA were produced in vitro by treating HSA with oxidants or glucose, respectively. Spectroscopic analysis confirmed that AOPP-HSA contains carbonyls and dityrosine. Both AOPP-HSA and AGE-HSA, but not purified dityrosine, were capable of triggering the oxidative burst of human monocytes in cultures. The AOPP-HSA-induced respiratory burst was dependent on the chlorinated nature of the oxidant and on the molar ratio HSA/HOCI. Collectively, these data first demonstrate that AOPP act as a mediator of oxidative stress and monocyte respiratory burst, which points to monocytes as both target and actor in the immune dysregulation associated with chronic uremia.

830 citations


Journal ArticleDOI
01 Dec 1998-Yeast
TL;DR: This review concentrates on the oxidant defence systems of the budding yeast Saccharomyces cerevisiae, which appears to have a number of inducible adaptive stress responses to oxidants, such as H2 O2 , superoxide anion and lipid peroxidation products.
Abstract: All aerobically growing organisms suffer exposure to oxidative stress, caused by partially reduced forms of molecular oxygen, known as reactive oxygen species (ROS). These are highly reactive and capable of damaging cellular constituents such as DNA, lipids and proteins. Consequently, cells from many different organisms have evolved mechanisms to protect their components against ROS. This review concentrates on the oxidant defence systems of the budding yeast Saccharomyces cerevisiae, which appears to have a number of inducible adaptive stress responses to oxidants, such as H2O2, superoxide anion and lipid peroxidation products. The oxidative stress responses appear to be regulated, at least in part, at the level of transcription and there is considerable overlap between them and many diverse stress responses, allowing the yeast cell to integrate its response towards environmental stress.

783 citations


Journal ArticleDOI
TL;DR: Human spermatozoa exposed to increasing levels of oxidative stress achieved through the stimulation of endogenous oxidant generation with NADPH or direct exposure to hydrogen peroxide exhibited significantly elevated levels of DNA damage and yet continued to express an enhanced capacity for sperm-oocyte fusion.
Abstract: Reactive oxygen metabolites are known to disrupt sperm-oocyte fusion, sperm movement, and DNA integrity; however, the relative sensitivities of these elements to oxidative stress are unknown. In this study these factors were assessed in human spermatozoa exposed to increasing levels of oxidative stress achieved through the stimulation of endogenous oxidant generation with NADPH or direct exposure to hydrogen peroxide. At low levels of oxidative stress, DNA fragmentation was significantly reduced while the rates of sperm-oocyte fusion were significantly enhanced. As the level of oxidative stress increased, the spermatozoa exhibited significantly elevated levels of DNA damage (p < 0.001) and yet continued to express an enhanced capacity for sperm-oocyte fusion. At the highest levels of oxidative stress, extremely high rates of DNA fragmentation were observed but the spermatozoa exhibited a parallel loss in their capacities for movement and oocyte fusion. These studies emphasize how redox mechanisms can either enhance or disrupt the functional and genomic integrity of human spermatozoa depending on the intensity of the oxidative stimulus. Because these qualities are affected at different rates, spermatozoa exhibiting significant DNA damage are still capable of fertilizing the oocyte. These results may have long-term implications for the safety of assisted conception procedures in cases associated with oxidative stress.

759 citations


Journal ArticleDOI
TL;DR: The pharmacological inhibition of poly(ADP-ribose) synthetase is a novel approach for the experimental therapy of various forms of inflammation and shock, stroke, myocardial and intestinal ischaemia-reperfusion, and diabetes mellitus.

701 citations


Journal ArticleDOI
TL;DR: Evidence enables us to hypothesize that a failure to process structurally modified proteins in regions of the brain exhibiting oxidative stress is a cause of both familial and sporadic PD.
Abstract: Current concepts of the cause of Parkinson's disease (PD) suggest a role for both genetic and environmental influences. Common to a variety of potential causes of nigral cell degeneration in PD is the involvement of oxidative stress. Postmortem analysis shows increased levels of iron, decreased complex I activity, and a decrease in reduced glutathione (GSH) levels. The decrease in GSH levels may be a particularly important component of the cascade of events leading to cell death because it occurs in the presymptomatic stage of PD and may directly induce nigral cell degeneration or render neurons susceptible to the actions of toxins. There is evidence suggesting that oxidative stress might originate in glial cells rather than in neurons, and alterations in glial function may be an important contributor to the pathologic process that occurs in PD. Oxidative damage occurs in the brain in PD, as shown by increased lipid peroxidation and DNA damage in the substantia nigra. Increased protein oxidation is also apparent, but this occurs in many areas of the brain and raises the specter of a more widespread pathologic process occurring in PD to which the substantia nigra is particularly vulnerable. The inability of the substantia nigra to handle damaged or mutant (eg, α-synuclein) proteins may lead to their aggregation and deposition and to the formation of Lewy bodies. Indeed, Lewy bodies stain for both α-synuclein and nitrated proteins. Current evidence enables us to hypothesize that a failure to process structurally modified proteins in regions of the brain exhibiting oxidative stress is a cause of both familial and sporadic PD.

Journal ArticleDOI
TL;DR: This study reports an increase in mean free HNE in multiple brain regions in AD compared with age-matched control subjects and suggests that HNE may be an important substance in the pathogenesis of neuron degeneration in AD.

Journal ArticleDOI
13 Aug 1998-Nature
TL;DR: The results indicate that mev-1 governs the rate of ageing by modulating the cellular response to oxidative stress, which may cause an indirect increase in superoxide levels, which in turn leads to oxygen hypersensitivity and premature ageing.
Abstract: Much attention has focused on the aetiology of oxidative damagein cellular and organismal ageing1,2,3,4. Especially toxic arethe reactive oxygen byproducts of respiration and other biological processes5. A mev-1 (kn1 ) mutant of Caenorhabditis elegans has been found to be hypersensitive to raised oxygen concentrations6,7. Unlike the wild type, its lifespan decreases dramatically as oxygen concentrations are increased from 1 to 60% (ref. 7). Strains bearing this mutation accumulate markers of ageing (such as fluorescent materials and protein carbonyls) faster than the wild type8,9. We show here that mev-1 encodes a subunit of the enzyme succinate dehydrogenase cytochrome b , which is a component of complex II of the mitochondrial electron transport chain. We found that the ability of complex II to catalyse electron transport from succinate to ubiquinone is compromised in mev-1 animals. This may cause an indirect increase in superoxide levels, which in turn leads to oxygen hypersensitivity and premature ageing. Our results indicate that mev-1 governs the rate of ageing by modulating the cellular response to oxidative stress.

Journal ArticleDOI
TL;DR: Feeding experiments suggested that neither oxidative stress, as results from exposure to H2O2, nor oxidized or reduced glutathione levels were responsible for activating transcription of these genes, but Jasmonic acid treatment increased mRNA levels and the capacity forglutathione synthesis but did not alter the glutATHione content in unstressed plants, which supports the idea that the glutathion concentration is controlled at multiple levels.
Abstract: Glutathione plays a pivotal role in protecting plants from environmental stresses, oxidative stress, xenobiotics, and some heavy metals. Arabidopsis plants treated with cadmium or copper responded by increasing transcription of the genes for glutathione synthesis, gamma-glutamylcysteine synthetase and glutathione synthetase, as well as glutathione reductase. The response was specific for those metals whose toxicity is thought to be mitigated through phytochelatins, and other toxic and nontoxic metals did not alter mRNA levels. Feeding experiments suggested that neither oxidative stress, as results from exposure to H2O2, nor oxidized or reduced glutathione levels were responsible for activating transcription of these genes. Jasmonic acid also activated the same suite of genes, which suggests that it might be involved in the signal transduction pathway for copper and cadmium. Jasmonic acid treatment increased mRNA levels and the capacity for glutathione synthesis but did not alter the glutathione content in unstressed plants, which supports the idea that the glutathione concentration is controlled at multiple levels.

Journal ArticleDOI
TL;DR: Experimental evidence of respiratory chain defects and of accumulation of multiple mtDNA deletions with ageing is in accordance with the mitochondrial theory, although some other experimental findings are not directly ascribable to its postulates.

Journal ArticleDOI
TL;DR: Elevated O2-.
Abstract: The endothelium is a source of reactive oxygen species in short-term models of hypercholesterolemia and atherosclerosis. We examined a chronic model of atherosclerosis for increased vascular production of superoxide (O2-.) and determined whether endothelial overexpression of superoxide dismutase (SOD) would improve endothelium-dependent relaxation. Superoxide generation was 3 times higher in isolated aortas from Watanabe heritable hyperlipidemic (WHHL) rabbits (2 to 4 years old) compared with aortas from New Zealand White (NZ) rabbits (43+/-10 versus 14+/-2 relative light units x min(-1) x mm(-2), n=9, P<0.05). After in vitro transduction with adenovirus containing the gene for CuZn-SOD (AdCMVCuZn-SOD) or extracellular SOD (AdCMVEC-SOD), endothelial O2-. levels in WHHL aortas were significantly reduced. Gene transfer of SOD to WHHL aortas, however, failed to improve the impaired relaxation to acetylcholine or calcium ionophore. By use of the oxidative fluorescent dye hydroethidine, an in situ assay indicated markedly increased generation of O2-. throughout the wall of WHHL aorta, especially within layers of smooth muscle. This finding was confirmed by demonstrating increased O2-. levels in smooth muscle cells cultured from WHHL aorta. We conclude that elevated O2-. levels in atherosclerotic vessels are not confined to the endothelium but occur throughout the vascular wall, including smooth muscle cells. Reduction in endothelial O2-. levels is not sufficient to improve endothelium-dependent relaxation. Generation of reactive oxygen species within the media may contribute to vasomotor dysfunction in atherosclerosis.

Journal ArticleDOI
TL;DR: Data are consistent with the hypothesis that continuous oscillatory shear causes a sustained activation of pro-oxidant processes resulting in redox-sensitive gene expression in human endothelial cells.
Abstract: Atherosclerotic lesions are found opposite vascular flow dividers at sites of low shear stress and oscillatory flow. Since endothelial proinflammatory genes prominent in lesions are regulated by oxidation-sensitive transcriptional control mechanisms, we examined the redox state of cultured human umbilical vein endothelial cells after either oscillatory or steady laminar fluid shear stress. Endothelial oxidative stress was assessed by measuring activity of the superoxide (O2.- )-producing NADH oxidase (a major source of reactive oxygen species in vascular cells), intracellular O2.- levels, induction of the redox-sensitive gene heme oxygenase-1 (HO-1), and abundance of Cu/Zn superoxide dismutase (Cu/Zn SOD), an antioxidant defense enzyme whose level of expression adapts to changes in oxidative stress. When cells were exposed to oscillatory shear (+/-5 dyne/cm2, 1 Hz) for 1, 5, and 24 hours, NADH oxidase activity and the amount of HO-1 progressively increased up to 174+/-16% (P<0.05) and 505+/-111% (P<0.05) versus static conditions, respectively, whereas levels of Cu/Zn SOD remained unchanged. This upregulation of HO-1 was completely blocked by the antioxidant N-acetylcysteine (NAC, 20 mmol/L). In contrast, steady laminar shear (5 dyne/cm2) induced NADH oxidase activity and NAC-sensitive HO-1 mRNA expression only at 1 and 5 hours, a transient response that returned toward baseline at 24 hours. Levels of Cu/Zn SOD mRNA and protein were increased after 24 hours of steady laminar shear. Furthermore, intracellular O2.-, as measured by dihydroethidium fluorescence, was higher in cells exposed to oscillatory than to laminar shear. These data are consistent with the hypothesis that continuous oscillatory shear causes a sustained activation of pro-oxidant processes resulting in redox-sensitive gene expression in human endothelial cells. Steady laminar shear stress initially activates these processes but appears to induce compensatory antioxidant defenses. We speculate that differences in endothelial redox state, orchestrated by different regimens of shear stress, may contribute to the focal nature of atherosclerosis.

Journal ArticleDOI
TL;DR: The data suggest that the protein-bound acrolein represents potential markers of oxidative stress and long-term damage to protein in aging, atherosclerosis, and diabetes.
Abstract: Acrolein (CH2=CH—CHO) is known as a ubiquitous pollutant in the environment. Here we show that this notorious aldehyde is not just a pollutant, but also a lipid peroxidation product that could be ubiquitously generated in biological systems. Upon incubation with BSA, acrolein was rapidly incorporated into the protein and generated the protein-linked carbonyl derivative, a putative marker of oxidatively modified proteins under oxidative stress. To verify the presence of protein-bound acrolein in vivo, the mAb (mAb5F6) against the acrolein-modified keyhole limpet hemocyanin was raised. It was found that the acrolein-lysine adduct, Nɛ-(3-formyl-3,4-dehydropiperidino)lysine, constitutes an epitope of the antibody. Immunohistochemical analysis of atherosclerotic lesions from a human aorta demonstrated that antigenic materials recognized by mAb5F6 indeed constituted the lesions, in which intense positivity was associated primarily with macrophage-derived foam cells and the thickening neointima of arterial walls. The observations that (i) oxidative modification of low-density lipoprotein with Cu2+ generated the acrolein-low-density lipoprotein adducts and (ii) the iron-catalyzed oxidation of arachidonate in the presence of protein resulted in the formation of antigenic materials suggested that polyunsaturated fatty acids are sources of acrolein that cause the production of protein-bound acrolein. These data suggest that the protein-bound acrolein represents potential markers of oxidative stress and long-term damage to protein in aging, atherosclerosis, and diabetes.

Journal ArticleDOI
TL;DR: It is demonstrated here the presence of nitrotyrosine immunoreactivity in Lewy bodies within melanized neurons and in amorphous deposits associated with intact and degenerating neurons, demonstrating that oxidative stress has occurred within the vulnerable neurons of PD.
Abstract: Oxidative stress has been proposed as a pathogenetic mechanism in Parkinson's disease (PD). One mechanism of oxidative cellular injury is the nitration of protein tyrosine residues, mediated by peroxynitrite, a reaction product of nitric oxide and superoxide radicals. We demonstrate here the presence of nitrotyrosine immunoreactivity in Lewy bodies within melanized neurons and in amorphous deposits associated with intact and degenerating neurons. The core of the Lewy body was frequently intensely immunolabeled, while the rim was lightly labeled or unlabeled. This likely reflects the fact that tyrosine residues of neurofilament proteins are primarily localized to Lewy body cores, and suggests that nitrotyrosine is present in neurofilament protein itself. Although these observations are as yet unable to provide a definitive link between oxidative stress and neuronal dysfunction, they demonstrate that oxidative stress has occurred within the vulnerable neurons of PD, leaving a permanent marker of oxidative modification of neuronal proteins within the target cells of neurodegeneration. In addition, these observations provide a potential link between excitotoxicity and oxidative stress within the vulnerable neurons of PD and represent a pathogenetic mechanism in common with the 2 other major age-related neurodegenerative diseases, Alzheimer disease and amyotrophic lateral sclerosis.

Journal ArticleDOI
Stephen A. Back1, Xiaodong Gan1, Ya Li1, Paul A. Rosenberg1, Joseph J. Volpe1 
TL;DR: It is reported here that OLs demonstrate maturation-dependent differences in survival when subjected to free radical-mediated injury induced by glutathione depletion, and that oligodendroglial maturation is associated with decreased susceptibility to oxidative stress.
Abstract: Death of oligodendrocyte (OL) precursors can be triggered in vitro by cystine deprivation, a form of oxidative stress that involves depletion of intracellular glutathione. We report here that OLs demonstrate maturation-dependent differences in survival when subjected to free radical-mediated injury induced by glutathione depletion. Using immunopanning to isolate rat preoligodendrocytes (preOLs), we generated highly enriched populations of preOLs and mature OLs under chemically defined conditions. Cystine deprivation caused a similar decrease in glutathione levels in OLs at both stages. However, preOLs were completely killed by cystine deprivation, whereas mature OLs remained viable. Although the glutathione-depleting agents buthionine sulfoximine and diethylmaleate were more potent in depleting glutathione in mature OLs, both agents were significantly more toxic to preOLs. Glutathione depletion markedly increased intracellular free radical generation in preOLs, but not in mature OLs, as indicated by oxidation of the redox-sensitive probe dihydrorhodamine 123. The antioxidants alpha-tocopherol, idebenone, and glutathione monoethylester prevented the oxidation of dihydrorhodamine in cystine-depleted preOLs and markedly protected against cell death. When the intracellular glutathione level was not manipulated, preOLs were also more vulnerable than mature OLs to exogenous free radical toxicity generated by a xanthine-xanthine oxidase system. Ultrastructural features of free radical-mediated injury in glutathione-depleted preOLs included nuclear condensation, margination of chromatin, and mitochondrial swelling. These observations indicate that preOLs are significantly more sensitive to the toxic effects of glutathione depletion and that oligodendroglial maturation is associated with decreased susceptibility to oxidative stress.

Journal ArticleDOI
TL;DR: The administration to aged mice of agents capable of activating the α isoform of the peroxisome proliferator-activated receptor (PPARα) was found to restore the cellular redox balance and suggest that PPARα and the genes under its control play a role in the evolution of oxidative stress excesses observed in aging.

Journal ArticleDOI
TL;DR: It is shown that members of the STAT family of transcription factors are activated in fibroblasts and A-431 carcinoma cells in response to H2O2, indicating that the JAK-STAT pathway responds to intracellular ROS and that PDGF uses ROS as a second messenger to regulate STAT activation.
Abstract: Reactive oxygen species (ROS) play an important role in the pathogenesis of many human diseases, including the acute respiratory distress syndrome, Parkinson’s disease, pulmonary fibrosis, and Alzh...

Journal ArticleDOI
TL;DR: In this paper, the markers of lipid peroxidation and defenses against oxidative stress in patients with varying degrees of congestive heart failure were studied, and the prognosis of these patients was established by measuring the levels of soluble tumor necrosis factor-alpha receptors 1 and 2 (sTNF-R1 and sTNFR2).

Journal ArticleDOI
TL;DR: A potential role for oxidative-induced injury in the cancer process specifically during the promotion stage is supported and the effect of nongenotoxic carcinogens may be amplified in rodents but not in primates because of rodents' greater sensitivity to ROS.
Abstract: Oxidative stress results when the balance between the production of reactive oxygen species (ROS) overrides the antioxidant capability of the target cell; oxidative damage from the interaction of reactive oxygen with critical cellular macromolecules may occur. ROS may interact with and modify cellular protein, lipid, and DNA, which results in altered target cell function. The accumulation of oxidative damage has been implicated in both acute and chronic cell injury including possible participation in the formation of cancer. Acute oxidative injury may produce selective cell death and a compensatory increase in cell proliferation. This stimulus may result in the formation of newly initiated preneoplastic cells and/or enhance the selective clonal expansion of latent initiated preneoplastic cells. Similarly, sublethal acute oxidative injury may produce unrepaired DNA damage and result in the formation of new mutations and, potentially, new initiated cells. In contrast, sustained chronic oxidative injury may lead to a nonlethal modification of normal cellular growth control mechanisms. Cellular oxidative stress can modify intercellular communication, protein kinase activity, membrane structure and function, and gene expression, and result in modulation of cell growth. We examined the role of oxidative stress as a possible mechanism by which nongenotoxic carcinogens may function. In studies with the selective mouse liver carcinogen dieldrin, a species-specific and dose-dependent decrease in liver antioxidant concentrations with a concomitant increase in ROS formation and oxidative damage was seen. This increase in oxidative stress correlated with an increase in hepatocyte DNA synthesis. Antioxidant supplementation prevented the dieldrin-induced cellular changes. Our findings suggest that the effect of nongenotoxic carcinogens (if they function through oxidative mechanisms) may be amplified in rodents but not in primates because of rodents' greater sensitivity to ROS. These results and findings reported by others support a potential role for oxidative-induced injury in the cancer process specifically during the promotion stage.

Journal ArticleDOI
01 Jul 1998-Glia
TL;DR: It is hypothesized that astrocytic activation may exert a trophic influence on the motor neurons that is insufficiently maintained late in the course of the disease, and agents which inhibit microglia may help to limit disease progression.
Abstract: Transgenic mice that highly over-express a mutated human CuZn superoxide dismutase (SOD1) gene [gly93-->ala; TgN(SOD1-G93A)G1H line] found in some patients with familial ALS (FALS) have been shown to develop motor neuron disease that is characterized by motor neuron loss in the lumbar and cervical spinal regions and a progressive loss of motor activity. The mutant Cu,Zn SOD exhibits essentially normal SOD activity but also generates toxic oxygen radicals as a result of an enhancement of a normally minor peroxidase reaction. Consequently, lipid and protein oxidative damage to the spinal motor neurons occurs and is associated with disease onset and progression. In the present study, we investigated the time course of microglial (major histocompatibility-II antigen immunoreactivity) and astrocytic (glial fibrillary acidic protein immunoreactivity) activation in relation to the course of motor neuron disease in the TgN(SOD1-G93A)G1H FALS mice. Four ages were investigated: 30 days (pre-motor neuron pathology and clinical disease); 60 days (after initiation of pathology, but pre-disease); 100 days (approximately 50% loss of motor neurons and function); and 120 days (near complete hindlimb paralysis). Compared to non-transgenic littermates, the TgN(SOD1-G93A)G1H mice showed significantly increased numbers of activated astrocytes (P < 0.01) at 100 days of age in both the cervical and lumbar spinal cord regions. However, at 120 days of age, the activation lost statistical significance. In contrast, microglial activation was significantly increased several-fold at both 100 and 120 days. We hypothesize that astrocytic activation may exert a trophic influence on the motor neurons that is insufficiently maintained late in the course of the disease. On the other hand, the sustained, intense microglial activation may conceivably contribute to the oxidative stress and damage involved in the disease process. If true, then agents which inhibit microglia may help to limit disease progression.

Journal ArticleDOI
TL;DR: The thesis that the neurodegenerative effects of two drugs, namely methamphetamine and methylenedioxymethamphetamine are due to ROS overproduction in monoaminergic systems in the brain is elaborate and the role of oxygen-based species in 6-hydroxydopamine-induced nigrostriatal dopaminergic degeneration and in Parkinson's disease is discussed.

Journal ArticleDOI
TL;DR: Results indicate that oxidative stress is increased in the apoE–/– mouse, is of functional importance in the evolution of atherosclerosis and can be suppressed by oral administration of vitamin E.
Abstract: Oxidative modification of low density lipoprotein (LDL) has been implicated in atherogenesis. Evidence consistent with this hypothesis includes the presence of oxidized lipids in atherosclerotic lesions, the newly discovered biological properties conferred on LDL by oxidation and the acceleration of atherogenesis by in vivo delivery of the gene for 15-lipoxygenase, an oxidizing enzyme present in atherosclerotic lesions. However, it is still unknown whether oxidative stress actually coincides with the evolution of the disease or whether it is of functional relevance to atherogenesis in vivo. Isoprostanes are products of arachidonic acid catalyzed by free radicals, which reflect oxidative stress and lipid peroxidation in vivo. Elevation of tissue and urinary isoprostanes is characteristic of human atherosclerosis. Here, deficiency in apolipoprotein E in the mouse (apoE-/-) resulted in atherogenesis and an increase in iPF2alpha-VI, an F2-isoprostane, in urine, plasma and vascular tissue. Supplementation with vitamin E significantly reduced isoprostane generation, but had no effect on plasma cholesterol levels in apoE-/- mice. Aortic lesion areas and iPF2alpha-VI levels in the arterial wall were also reduced significantly by vitamin E. Our results indicate that oxidative stress is increased in the apoE-/- mouse, is of functional importance in the evolution of atherosclerosis and can be suppressed by oral administration of vitamin E.

Journal ArticleDOI
TL;DR: In this paper, the application of a moderate water deficit (water potential of −1.3 MPa) to pea (Pisum sativum L. cv Lincoln) leaves led to a 75% inhibition of photosynthesis and to increases in zeaxanthin, malondialdehyde, oxidized proteins, and mitochondrial, cytosolic, and chloroplastic superoxide dismutase activities.
Abstract: The application of a moderate water deficit (water potential of −1.3 MPa) to pea (Pisum sativum L. cv Lincoln) leaves led to a 75% inhibition of photosynthesis and to increases in zeaxanthin, malondialdehyde, oxidized proteins, and mitochondrial, cytosolic, and chloroplastic superoxide dismutase activities. Severe water deficit (−1.9 MPa) almost completely inhibited photosynthesis, decreased chlorophylls, β-carotene, neoxanthin, and lutein, and caused further conversion of violaxanthin to zeaxanthin, suggesting damage to the photosynthetic apparatus. There were consistent decreases in antioxidants and pyridine nucleotides, and accumulation of catalytic Fe, malondialdehyde, and oxidized proteins. Paraquat (PQ) treatment led to similar major decreases in photosynthesis, water content, proteins, and most antioxidants, and induced the accumulation of zeaxanthin and damaged proteins. PQ decreased markedly ascorbate, NADPH, ascorbate peroxidase, and chloroplastic Fe-superoxide dismutase activity, and caused major increases in oxidized glutathione, NAD+, NADH, and catalytic Fe. It is concluded that, in cv Lincoln, the increase in catalytic Fe and the lowering of antioxidant protection may be involved in the oxidative damage caused by severe water deficit and PQ, but not necessarily in the incipient stress induced by moderate water deficit. Results also indicate that the tolerance to water deficit in terms of oxidative damage largely depends on the legume cultivar.


Journal ArticleDOI
TL;DR: In this article, the superoxide dismutase (SOD) mimetic Manganese 5, 10, 15, 20, 20-tetrakis (4-benzoic acid) porphyrin (MnTBAP) was used to save mice from systemic pathology and dramatically prolong their survival.
Abstract: Reactive oxygen species (ROS) have been implicated in a wide range of degenerative processes including amyotrophic lateral sclerosis, ischemic heart disease, Alzheimer disease, Parkinson disease and aging. ROS are generated by mitochondria as the toxic by-products of oxidative phosphorylation, their energy generating pathway. Genetic inactivation of the mitochondrial form of superoxide dismutase in mice results in dilated cardiomyopathy, hepatic lipid accumulation and early neonatal death. We report that treatment with the superoxide dismutase (SOD) mimetic Manganese 5, 10, 15, 20-tetrakis (4-benzoic acid) porphyrin (MnTBAP) rescues these Sod2tm1Cje(-/-) mutant mice from this systemic pathology and dramatically prolongs their survival. The animals instead develop a pronounced movement disorder progressing to total debilitation by three weeks of age. Neuropathologic evaluation reveals a striking spongiform degeneration of the cortex and specific brain stem nuclei associated with gliosis and intramyelinic vacuolization similar to that observed in cytotoxic edema and disorders associated with mitochondrial abnormalities such as Leighs disease and Canavans disease. We believe that due to the failure of MnTBAP to cross the blood brain barrier progressive neuropathology is caused by excessive mitochondrial production of ROS. Consequently, MnTBAP-treated Sod2tm1Cje(-/-) mice may provide an excellent model for examining the relationship between free radicals and neurodegenerative diseases and for screening new drugs to treat these disorders.