scispace - formally typeset
Search or ask a question

Showing papers on "Oxidative stress published in 2000"


Journal ArticleDOI
09 Nov 2000-Nature
TL;DR: Evidence that the appropriate and inappropriate production of oxidants, together with the ability of organisms to respond to oxidative stress, is intricately connected to ageing and life span is reviewed.
Abstract: Living in an oxygenated environment has required the evolution of effective cellular strategies to detect and detoxify metabolites of molecular oxygen known as reactive oxygen species. Here we review evidence that the appropriate and inappropriate production of oxidants, together with the ability of organisms to respond to oxidative stress, is intricately connected to ageing and life span.

8,665 citations


Journal ArticleDOI
TL;DR: Accumulating evidence suggests that oxidant stress alters many functions of the endothelium, including modulation of vasomotor tone, and as the role of these various enzyme sources of ROS become clear, it will perhaps be possible to use more specific therapies to prevent their production and ultimately correct endothelial dysfunction.
Abstract: Accumulating evidence suggests that oxidant stress alters many functions of the endothelium, including modulation of vasomotor tone. Inactivation of nitric oxide (NO(.)) by superoxide and other reactive oxygen species (ROS) seems to occur in conditions such as hypertension, hypercholesterolemia, diabetes, and cigarette smoking. Loss of NO(.) associated with these traditional risk factors may in part explain why they predispose to atherosclerosis. Among many enzymatic systems that are capable of producing ROS, xanthine oxidase, NADH/NADPH oxidase, and uncoupled endothelial nitric oxide synthase have been extensively studied in vascular cells. As the role of these various enzyme sources of ROS become clear, it will perhaps be possible to use more specific therapies to prevent their production and ultimately correct endothelial dysfunction.

3,756 citations


Journal ArticleDOI
TL;DR: The evidence for ligand-induced generation of ROS, its cellular sources, and the signaling pathways that are activated is examined.
Abstract: Reactive oxygen species (ROS) are generated as by-products of cellular metabolism, primarily in the mitochondria. When cellular production of ROS overwhelms its antioxidant capacity, damage to cellular macromolecules such as lipids, protein, and DNA may ensue. Such a state of “oxidative stress” is thought to contribute to the pathogenesis of a number of human diseases including those of the lung. Recent studies have also implicated ROS that are generated by specialized plasma membrane oxidases in normal physiological signaling by growth factors and cytokines. In this review, we examine the evidence for ligand-induced generation of ROS, its cellular sources, and the signaling pathways that are activated. Emerging concepts on the mechanisms of signal transduction by ROS that involve alterations in cellular redox state and oxidative modifications of proteins are also discussed.

2,757 citations


Journal ArticleDOI
TL;DR: The concept that AMD can be attributed to cumulative oxidative stress is enticing, but remains unproven, and the effect of nutritional antioxidant supplements on the onset and natural course of age-related macular disease is currently being evaluated.

1,870 citations


Journal ArticleDOI
TL;DR: Recent results confirm the prominent role of astrocytes in glutathione metabolism and the defense against reactive oxygen species in brain and suggest an involvement of a compromised astroglial glutATHione system in the oxidative stress reported for neurological disorders.

1,582 citations


Journal ArticleDOI
01 Nov 2000-Diabetes
TL;DR: Both high glucose level and palmitate may stimulate ROS production through PKC-dependent activation of NAD(P)H oxidase in both vascular SMCs and ECs, which may be involved in the excessive acceleration of atherosclerosis in patients with diabetes and insulin resistance syndrome.
Abstract: Recent studies have revealed that vascular cells can produce reactive oxygen species (ROS) through NAD(P)H oxidase, which may be involved in vascular injury. However, the pathological role of vascular NAD(P)H oxidase in diabetes or in the insulin-resistant state remains unknown. In this study, we examined the effect of high glucose level and free fatty acid (FFA) (palmitate) on ROS production in cultured aortic smooth muscle cells (SMCs) and endothelial cells (ECs) using electron spin resonance spectroscopy. Exposure of cultured SMCs or ECs to a high glucose level (400 mg/dl) for 72 h significantly increased the free radical production compared with low glucose level exposure (100 mg/dl). Treatment of the cells for 3 h with phorbol myristic acid (PMA), a protein kinase C (PKC) activator, also increased free radical production. This increase was restored to the control value by diphenylene iodonium, a NAD(P)H oxidase inhibitor, suggesting ROS production through PKC-dependent activation of NAD(P)H oxidase. The increase in free radical production by high glucose level exposure was completely restored by both diphenylene iodonium and GF109203X, a PKC-specific inhibitor. Exposure to palmitate (200 micromol/l) also increased free radical production, which was concomitant with increases in diacylglycerol level and PKC activity. Again, this increase was restored to the control value by both diphenylene iodonium and GF109203X. The present results suggest that both high glucose level and palmitate may stimulate ROS production through PKC-dependent activation of NAD(P)H oxidase in both vascular SMCs and ECs. This finding may be involved in the excessive acceleration of atherosclerosis in patients with diabetes and insulin resistance syndrome.

1,509 citations


Journal ArticleDOI
TL;DR: The evidence strongly suggests that the numerous mechanisms of quinone toxicity can be correlated with the known pathology of the parent compound(s), including benzene, polycyclic aromatic hydrocarbons, estrogens, and catecholamines.
Abstract: Quinones represent a class of toxicological intermediates which can create a variety of hazardous effects in vivo, including acute cytotoxicity, immunotoxicity, and carcinogenesis. The mechanisms by which quinones cause these effects can be quite complex. Quinones are Michael acceptors, and cellular damage can occur through alkylation of crucial cellular proteins and/or DNA. Alternatively, quinones are highly redox active molecules which can redox cycle with their semiquinone radicals, leading to formation of reactive oxygen species (ROS), including superoxide, hydrogen peroxide, and ultimately the hydroxyl radical. Production of ROS can cause severe oxidative stress within cells through the formation of oxidized cellular macromolecules, including lipids, proteins, and DNA. Formation of oxidatively damaged bases such as 8-oxodeoxyguanosine has been associated with aging and carcinogenesis. Furthermore, ROS can activate a number of signaling pathways, including protein kinase C and RAS. This review explore...

1,499 citations


Journal ArticleDOI
TL;DR: The existing evidence support the view that oxidative stress may play a crucial role in cardiac and vascular abnormalities in different types of cardiovascular diseases and that the antioxidant therapy may prove beneficial in combating these problems.
Abstract: ObjectivesIn view of the critical role of intracellular Ca2+-overload in the genesis of myocyte dysfunction and the ability of reactive oxygen species (ROS) to induce the intracellular Ca2+-overload, this article is concerned with analysis of the existing literature with respect to the role of oxida

1,394 citations


Journal ArticleDOI
TL;DR: This paper reviews major key points in the generation of reactive oxygen species in bacteria, defense mechanisms and genetic responses to oxidative stress, with special attention to oxidative damage to proteins.
Abstract: The advent of O2 in the atmosphere was among the first major pollution events occurred on earth. The reaction between ferrous iron, very abundant in the reductive early atmosphere, and oxygen results in the formation of harmful superoxide and hydroxyl radicals, which affect all macromolecules (DNA, lipids and proteins). Living organisms have to build up mechanisms to protect themselves against oxidative stress, with enzymes such as catalase and superoxide dismutase, small proteins like thioredoxin and glutaredoxin, and molecules such as glutathione. Bacterial genetic responses to oxidative stress are controlled by two major transcriptional regulators (OxyR and SoxRS). This paper reviews major key points in the generation of reactive oxygen species in bacteria, defense mechanisms and genetic responses to oxidative stress. Special attention is paid to the oxidative damage to proteins.

1,384 citations


Journal ArticleDOI
TL;DR: This article focuses on the mechanisms by which antioxidants and xenobiotics induce the gene expression of detoxifying enzymes and small molecules that mimic antioxidant enzymes are becoming new tools for the treatment of many diseases.

1,378 citations


Journal ArticleDOI
TL;DR: It is shown that Nrf2 controls the expression of a group of electrophile- and oxidative stress-inducible proteins and activities, which includes heme oxygenase-1, A170, peroxiredoxin MSP23, and cystine membrane transport (system xc −) activity.

Journal ArticleDOI
TL;DR: Redox regulation of gene expression by superoxide and other related oxidants and antioxidants is beginning to unfold as a vital mechanism in health and disease.

Journal ArticleDOI
TL;DR: This review will address some of the current paradigms for oxidative stress and apoptosis, and discuss the potential mechanisms by which oxidants can modulate the apoptotic pathway.

Journal ArticleDOI
TL;DR: The discussion presented here provides a tabular summary of many of the redox effects on gene expression and signaling pathways that are currently known to exist, and highlights the growing number of pathways shown to be dependent on oxidation or antioxidation.

Journal ArticleDOI
TL;DR: The evidence for a disturbance of glutathione homeostasis that may either lead to or result from oxidative stress in neurodegenerative disorders is reviewed.
Abstract: There is significant evidence that the pathogenesis of several neurodegenerative diseases, including Parkinson’s disease, Alzheimer’s disease, Friedreich’s ataxia and amyotrophic lateral sclerosis, may involve the generation of reactive oxygen species and mitochondrial dysfunction. Here, we review the evidence for a disturbance of glutathione homeostasis that may either lead to or result from oxidative stress in neurodegenerative disorders. Glutathione is an important intracellular antioxidant that protects against a variety of different antioxidant species. An important role for glutathione was proposed for the pathogenesis of Parkinson’s disease, because a decrease in total glutathione concentrations in the substantia nigra has been observed in preclinical stages, at a time at which other biochemical changes are not yet detectable. Because glutathione does not cross the blood‐brain barrier other treatment options to increase brain concentrations of glutathione including glutathione analogs, mimetics or precursors are discussed.

Journal ArticleDOI
TL;DR: Although the evidence for the antioxidant properties of zinc is compelling, the mechanisms are still unclear and future research that probes these mechanisms could potentially develop new antioxidant functions and uses for zinc.
Abstract: The ability of zinc to retard oxidative processes has been recognized for many years. In general, the mechanism of antioxidation can be divided into acute and chronic effects. Chronic effects involve exposure of an organism to zinc on a long-term basis, resulting in induction of some other substance that is the ultimate antioxidant, such as the metallothioneins. Chronic zinc deprivation generally results in increased sensitivity to some oxidative stress. The acute effects involve two mechanisms: protection of protein sulfhydryls or reduction of (*)OH formation from H(2)O(2) through the antagonism of redox-active transition metals, such as iron and copper. Protection of protein sulfhydryl groups is thought to involve reduction of sulfhydryl reactivity through one of three mechanisms: (1) direct binding of zinc to the sulfhydryl, (2) steric hindrance as a result of binding to some other protein site in close proximity to the sulfhydryl group or (3) a conformational change from binding to some other site on the protein. Antagonism of redox-active, transition metal-catalyzed, site-specific reactions has led to the theory that zinc may be capable of reducing cellular injury that might have a component of site-specific oxidative damage, such as postischemic tissue damage. Zinc is capable of reducing postischemic injury to a variety of tissues and organs through a mechanism that might involve the antagonism of copper reactivity. Although the evidence for the antioxidant properties of zinc is compelling, the mechanisms are still unclear. Future research that probes these mechanisms could potentially develop new antioxidant functions and uses for zinc.

Journal ArticleDOI
Betteridge Dj1
TL;DR: Important free radicals are described and biological sources of origin discussed, together with the major antioxidant defense mechanisms, and examples of the possible consequences of free radical damage are provided with special emphasis on lipid peroxidation.
Abstract: Oxidative stress, defined as a disturbance in the balance between the production of reactive oxygen species (free radicals) and antioxidant defenses, is discussed in relation to its possible role in the production of tissue damage in diabetes mellitus. Important free radicals are described and biological sources of origin discussed, together with the major antioxidant defense mechanisms. Examples of the possible consequences of free radical damage are provided with special emphasis on lipid peroxidation. Finally, the question of whether oxidative stress is increased in diabetes mellitus is discussed.

Journal ArticleDOI
Yves Christen1
TL;DR: Many free radical scavengers have produced promising results in relation to AD, as has desferrioxamine-an iron-chelating agent- and antiinflammatory drugs and estrogens, which also have an antioxidant effect.

Journal ArticleDOI
TL;DR: A large number of highly reactive microbicidal oxidants are formed, including HOCl (hypochlorous acid), which is produced by the myeloperoxidase-catalyzed oxidation of Cl(-) by H(2)O(2); OH(*) (hydroxyl radical); ONOO(-) (peroxynitrite), formed by the reaction between O(2)(-) and NO(*); and many others.

Journal ArticleDOI
TL;DR: It is demonstrated that GSPE is highly bioavailable and provides significantly greater protection against free radicals and free radical-induced lipid peroxidation and DNA damage than vitamins C, E and beta-carotene.

Journal ArticleDOI
TL;DR: Determining which of the proposed sources of free radicals, which include mitochondrial dysfunction, amyloid-beta-mediated processes, transition metal accumulation and genetic factors like apolipoprotein E and presenilins, is responsible for redox imbalance will lead to a better understanding of Alzheimer's disease pathogenesis and novel therapeutic approaches.

Journal ArticleDOI
TL;DR: Zinc plays critical roles in the defence system of cells against ROS, and thus represents an excellent protective agent against the oxidation of several vital cell components such as membrane lipids and proteins, chlorophyll, SH-containing enzymes and DNA.
Abstract: Zinc deficiency is one of the most widespread micronutrient deficiencies in plants and causes severe reductions in crop production. There are a number of physiological impairments in Zn-deficient cells causing inhibition of the growth, differentiation and development of plants. Increasing evidence indicates that oxidative damage to critical cell compounds resulting from attack by reactive O2 species (ROS) is the basis of disturbances in plant growth caused by Zn deficiency. Zinc interferes with membrane-bound NADPH oxidase producing ROS. In Zn-deficient plants the iron concentration increases, which potentiates the production of free radicals. The Zn nutritional status of plants influences photooxidative damage to chloroplasts, catalysed by ROS. Zinc-deficient leaves are highly light-sensitive, rapidly becoming chlorotic and necrotic when exposed to high light intensity. Zinc plays critical roles in the defence system of cells against ROS, and thus represents an excellent protective agent against the oxidation of several vital cell components such as membrane lipids and proteins, chlorophyll, SH-containing enzymes and DNA. The cysteine, histidine and glutamate or aspartate residues represent the most critical Zn- binding sites in enzymes, DNA-binding proteins (Zn-finger proteins) and membrane proteins. In addition, animal studies have shown that Zn is involved in inhibition of apoptosis (programmed cell death) which is preceded by DNA and membrane damage through reactions with ROS. contents Summary 185 I. introduction 186 II. effect of zinc on production of reactive oxygen species 186 III. membrane damage by reactive oxygen species 193 III. membrane damage by reactive oxygen species 193 V. involvement of zinc in plant stress tolerance 199 VI. conclusions 199 Acknowledgements 200 References 200.

Journal ArticleDOI
TL;DR: New pharmacological strategies aimed at supplementing antioxidant defense systems while antagonizing redox-sensitive signal transduction may allow improved clinical management of chronic inflammatory or degenerative conditions, including Alzheimer's disease.

Journal ArticleDOI
TL;DR: Reactive oxygen species participate in vascular smooth muscle cell growth and migration; modulation of endothelial function, including endothelium-dependent relaxation and expression of a proinflammatory phenotype; and modification of the extracellular matrix.
Abstract: Emerging evidence indicates that reactive oxygen species, especially superoxide and hydrogen peroxide, are important signaling molecules in cardiovascular cells. Their production is regulated by hormone-sensitive enzymes such as the vascular NAD(P)H oxidases, and their metabolism is coordinated by antioxidant enzymes such as superoxide dismutase, catalase, and glutathione peroxidase. Both of these reactive oxygen species serve as second messengers to activate multiple intracellular proteins and enzymes, including the epidermal growth factor receptor, c-Src, p38 mitogen-activated protein kinase, Ras, and Akt/protein kinase B. Activation of these signaling cascades and redox-sensitive transcription factors leads to induction of many genes with important functional roles in the physiology and pathophysiology of vascular cells. Thus, reactive oxygen species participate in vascular smooth muscle cell growth and migration; modulation of endothelial function, including endothelium-dependent relaxation and expression of a proinflammatory phenotype; and modification of the extracellular matrix. All of these events play important roles in vascular diseases such as hypertension and atherosclerosis, suggesting that the sources of reactive oxygen species and the signaling pathways that they modify may represent important therapeutic targets.

Journal ArticleDOI
TL;DR: The proposed endogenous functions of the AHR and [Ah] enzymes are, of course, in addition to the frequently described functions of "metabolic potentiation" and "detoxification" of various foreign chemicals.

Journal ArticleDOI
TL;DR: In this article, the authors measured changes in the oxygen tension within the human placenta associated with onset of the maternal arterial circulation at the end of the first trimester of pregnancy, and the impact on placental tissues.
Abstract: The aim was to measure changes in the oxygen tension within the human placenta associated with onset of the maternal arterial circulation at the end of the first trimester of pregnancy, and the impact on placental tissues. Using a multiparameter probe we established that the oxygen tension rises steeply from 50 mmHg at 12 weeks. This rise coincides with morphological changes in the uterine arteries that allow free flow of maternal blood into the placenta, and is associated with increases in the mRNA concentrations and activities of the antioxidant enzymes catalase, glutathione peroxidase, and manganese and copper/zinc superoxide dismutase within placental tissues. Between 8 to 9 weeks there is a sharp peak of expression of the inducible form of heat shock protein 70, formation of nitrotyrosine residues, and derangement of the mitochondrial cristae within the syncytiotrophoblast. We conclude that a burst of oxidative stress occurs in the normal placenta as the maternal circulation is established. We speculate that this may serve a physiological role in stimulating normal placental differentiation, but may also be a factor in the pathogenesis of pre-eclampsia and early pregnancy failure if antioxidant defenses are depleted.

Journal ArticleDOI
I. C. West1
TL;DR: It is argued that oxygen, antioxidant defences, and cellular redox status should now be regarded as central players in diabetes and the metabolic syndrome.
Abstract: Recent evidence is reviewed indicating increased oxidative damage in Type 1 and Type 2 diabetes mellitus as well as deficits in antioxidant defence enzymes and vitamins. Mechanisms are considered whereby hyperglycaemia can increase oxidative stress, and change the redox potential of glutathione and whereby reactive oxygen species can cause hyperglycaemia. It is argued that oxygen, antioxidant defences, and cellular redox status should now be regarded as central players in diabetes and the metabolic syndrome.

Journal ArticleDOI
01 Sep 2000-Science
TL;DR: It appears that oxidative stress is a major determinant of life-span and that it can be counteracted by pharmacological intervention.
Abstract: We tested the theory that reactive oxygen species cause aging. We augmented the natural antioxidant systems of Caenorhabditis elegans with small synthetic superoxide dismutase/catalase mimetics. Treatment of wild-type worms increased their mean life-span by a mean of 44 percent, and treatment of prematurely aging worms resulted in normalization of their life-span (a 67 percent increase). It appears that oxidative stress is a major determinant of life-span and that it can be counteracted by pharmacological intervention.

Journal ArticleDOI
TL;DR: It is demonstrated that much of the evidence for the involvement of oxidative stress is either specific to a stimulus in a particular cell line or open to reinterpretation, and that other evidence suggests a role for lipid peroxides in pathways where such a role exists.

Journal ArticleDOI
TL;DR: The redox control and involvement of nuclear factor-kappaB and activator protein-1 in the regulation of cellular glutathione and gamma-glutamylcysteine synthetase under conditions of oxidative stress and inflammation are described.
Abstract: Inflammatory lung diseases are characterized by chronic inflammation and oxidant/antioxidant imbalance, a major cause of cell damage. The development of an oxidant/antioxidant imbalance in lung inflammation may activate redox-sensitive transcription factors such as nuclear factor-KB, and activator protein-1 (AP-1), which regulate the genes for pro-inflammatory mediators and protective antioxidant genes. Glutathione (GSH), a ubiquitous tripeptide thiol, is a vital intra- and extracellular protective antioxidant against oxidative/nitrosative stresses, which plays a key role in the control of pro-inflammatory processes in the lungs. Recent findings have suggested that GSH is important in immune modulation, remodelling of the extracellular matrix, apoptosis and mitochondrial respiration. The rate-limiting enzyme in GSH synthesis is gamma-glutamylcysteine synthetase (gamma-GCS). The human gamma-GCS heavy and light subunits are regulated by AP-1 and antioxidant response elements and are modulated by oxidants, phenolic antioxidants, growth factors, and inflammatory and anti-inflammatory agents in lung cells. Alterations in alveolar and lung GSH metabolism are widely recognized as a central feature of many inflammatory lung diseases such as idiopathic pulmonary fibrosis, acute respiratory distress syndrome, cystic fibrosis and asthma. The imbalance and/or genetic variation in antioxidant gamma-GCS and pro-inflammatory versus antioxidant genes in response to oxidative stress and inflammation in some individuals may render them more susceptible to lung inflammation. Knowledge of the mechanisms of GSH regulation and balance between the release and expression of pro- and anti-inflammatory mediators could lead to the development of novel therapies based on the pharmacological manipulation of the production as well as gene transfer of this important antioxidant in lung inflammation and injury. This review describes the redox control and involvement of nuclear factor-kappaB and activator protein-1 in the regulation of cellular glutathione and gamma-glutamylcysteine synthetase under conditions of oxidative stress and inflammation, the role of glutathione in oxidant-mediated susceptibility/tolerance, gamma-glutamylcysteine synthetase genetic susceptibility and the potential therapeutic role of glutathione and its precursors in protecting against lung oxidant stress, inflammation and injury.